Computed Tomography to Detect Coronary Artery Calcification

Description

Several types of fast computed tomography imaging, including electron-beam computed tomography and spiral computed tomography, allow the quantification of calcium in coronary arteries. Coronary artery calcium (CAC) is associated with coronary artery disease (CAD). The use of CAC scores has been studied in the prediction of future risk of CAD and in the diagnosis of CAD in symptomatic patients.

The development of fast computed tomography (CT) scanners has allowed the measurement of CAC in clinical practice. CAC has been evaluated in several clinical settings. The most widely studied indication is for the use of CAC in the prediction of future risk of CAD in patients with subclinical disease, with the goal of instituting appropriate risk-reducing therapy (eg, statin treatment, lifestyle modifications) to improve outcomes. Also, CAC has been evaluated in patients with symptoms potentially consistent with CAD, but in whom a diagnosis is unclear.

Detection

Electron-beam computed tomography (EBCT; also known as ultrafast CT) and spiral CT (or helical CT) may be used as an alternative to conventional CT scanning due to faster throughput. In both methods, the speed of image acquisition gives them unique value for imaging a moving heart. The rapid image acquisition time virtually eliminates motion artifact related to cardiac contraction, permitting visualization of the calcium in the epicardial coronary arteries. EBCT software permits quantification of calcium area and density, which are translated into calcium scores. Calcium scores have been investigated as a technique for detecting CAC, both as a diagnostic technique in symptomatic patients to rule out an atherosclerotic etiology of symptoms or, in asymptomatic patients, as an adjunctive method for risk stratification for CAD.
EBCT and multidetector CT were initially the primary fast CT methods for measurement of CAC. A fast CT study for CAC measurement takes 10 to 15 minutes and requires only a few seconds of scanning time. More recently, computed tomography angiography has been used to assess coronary calcium. Because of the basic similarity between EBCT and computed tomography angiography in measuring coronary calcium, it is expected that computed tomography angiography provides information on coronary calcium that is similar to EBCT.

CT scan-derived coronary calcium measures have been used to evaluate coronary atherosclerosis. Coronary calcium is present in coronary atherosclerosis, but atherosclerosis detected may or may not be causing ischemia or symptoms. Coronary calcium measures may be correlated with the presence of critical coronary stenosis or serve as a measure of the patient's proclivity toward atherosclerosis and future coronary disease. Thus, coronary calcium could serve as a variable to be used in a risk assessment calculation to determine appropriate preventive treatment in asymptomatic patients. Alternatively, in other clinical scenarios, coronary calcium scores might help determine whether there is an atherosclerotic etiology or component to the presenting clinical problem in symptomatic patients, thus helping to direct further workup for the clinical problem. In this second scenario, a calcium score of 0 usually indicates that the patient's clinical problem is unlikely to be due to atherosclerosis and that other etiologies should be more strongly considered. In neither case does the test determine a specific diagnosis. Most clinical studies have examined the use of coronary calcium for its potential use in estimating the risk of future coronary heart disease events.

Nomenclature

Coronary calcium levels can be expressed in many ways. The most common method is the Agatston score, which is a weighted summed total of calcified coronary artery area observed on CT. This value can be expressed as an absolute number, commonly ranging from 0 (low-risk) to 400 (high-risk). These values can be translated into age- and sex-specific percentile values. Different imaging methods and protocols will produce different values based on the specific algorithm used to create the score, but the correlation between any 2 methods appears to be high, and scores from 1 method can be translated into scores from a different method.

OBJECTIVE

The objective of this evidence review is to evaluate the net health outcome of the use of computed tomography to detect coronary artery calcium for patients with chest pain symptoms suggestive of coronary artery disease, compared to standard diagnostic testing, does the use of coronary artery calcium scoring to rule out coronary artery disease reduce the use of unnecessary invasive coronary angiography? This review does not address computed tomography coronary artery calcium scoring for asymptomatic patients due to coverage eligibility.

POLICY STATEMENT

The use of computed tomography to detect coronary artery calcification is considered investigational.

POLICY GUIDELINES

When quantitative assessment is performed as part of the same encounter as contrast-enhanced cardiac computed tomography or coronary computed tomography angiography, it is included in the service.

The primary fast computed tomography methods for this determination are electron beam computed tomography and multidetector computed tomography.

The policies contained in the FEP Medical Policy Manual are developed to assist in administering contractual benefits and do not constitute medical advice. They are not intended to replace or substitute for the independent medical judgment of a practitioner or other health care professional in the treatment of an individual member. The Blue Cross and Blue Shield Association does not intend by the FEP Medical Policy Manual, or by any particular medical policy, to recommend, advocate, encourage or discourage any particular medical technologies. Medical decisions relative to medical technologies are to be made strictly by members/patients in consultation with their health care providers. The conclusion that a particular service or supply is medically necessary does not constitute a representation or warranty that the Blue Cross and Blue Shield Service Benefit Plan covers (or pays for) this service or supply for a particular member.
BENEFIT APPLICATION

Experimental or investigational procedures, treatments, drugs, or devices are not covered (See General Exclusion Section of brochure).

Coverage eligibility of computed tomography scanning to detect coronary artery calcium may be limited by contractual exclusions for screening tests. (See USPSTF determination below)

FDA REGULATORY STATUS

Many models of CT devices, including EBCT and other ultrafast CT devices, have been cleared for marketing by the U.S. Food and Drug Administration (FDA) through the 510(k) process. U.S. FDA product code: JAK.

RATIONALE

Summary of Evidence

For individuals with signs and/or symptoms suggestive of coronary artery disease (CAD) who receive coronary artery calcium (CAC) scoring before other diagnostic testing, the evidence includes systematic reviews, randomized controlled trials (RCTs), and nonrandomized observational studies. Relevant outcomes are overall survival (OS), test accuracy and validity, morbid events, and resource utilization. CAC scoring has potential as a diagnostic test to rule out CAD in patients presenting with symptoms or as a "gatekeeper" test before invasive imaging is performed. Evidence from observational studies has suggested that negative results on CAC scoring rule out CAD with good reliability. However, the evidence has been inconsistent, with some studies reporting a lack of value when using a 0 calcium score to rule out CAD. Further prospective trials would be needed to demonstrate that such a strategy is effective in practice and is at least as effective as alternative strategies for ruling out CAD. To demonstrate that use of calcium scores improves the efficiency or accuracy of the diagnostic workup of symptomatic patients, rigorous studies defining exactly how CAC scores would be used in combination with other tests to triage patients would be necessary. The evidence is insufficient to determine the effects of the technology on health outcomes.

SUPPLEMENTAL INFORMATION

Practice Guidelines and Position Statements

Practice Guideline - American Heart Association/American College of Cardiology

The American College of Cardiology and American Heart Association (2018) Clinical Practice Guidelines on the Management of Blood Cholesterol state, "When risk status is uncertain, a coronary artery calcium (CAC) score is an option to facilitate decision making in adults 40 to 75 years of age." The guidelines further note, "One purpose of CAC scoring is to reclassify risk identification of patients who will potentially benefit from statin therapy. This is especially useful when the clinician and patient are uncertain whether to start a statin. Indeed, the most important recent observation has been the finding that a CAC score of 0 indicates a low atherosclerotic
cardiovascular disease (ASCVD) risk for the subsequent 10 years. Thus, measurement of CAC potentially allows a clinician to withhold statin therapy in patients showing 0 CAC."

With regard to the prognostic significance of CAC, the guideline "makes use of the available data to predict the risk associated with CAC.38 The guideline notes that "these data need to be amplified by new and ongoing studies to guide treatment decisions" and that "particular uncertainty exists about the predictive value of intermediate CAC scores." Additionally, there are concerns regarding the predictive significance of a CAC score of 0, which must be further verified in follow-up studies. For patients with a 0 score, "it is currently uncertain when and if follow-up CAC measurements should be done to reassess risk status."

The American College of Cardiology and American Heart Association (2019) Guideline on the Primary Prevention of Cardiovascular Disease is in line with the blood cholesterol guideline stating that adults (40 to 75 years of age) who are being evaluated for cardiovascular disease prevention should initially undergo 10-year atherosclerotic cardiovascular disease (ASCVD) risk estimation with a clinician-patient risk discussion before starting pharmacological therapy.39 The guideline also notes that assessing for other risk-enhancing factors can help guide decision making "about preventive interventions in select individuals, as can CAC scanning." The guideline specifically states the following recommendation regarding assessment of cardiovascular risk and CAC:

- In adults at intermediate risk ($\geq 7.5\%$ to $< 20\%$ 10-year ASCVD risk) or selected adults at borderline risk (5% to $<7.5\%$ 10-year ASCVD risk), if risk-based decisions for preventive interventions remain uncertain, it is reasonable to measure a CAC score to guide clinician-patient risk discussion [Class (Strength) of Recommendation: IIa; Level (Quality) of Evidence: B-NR]. A IIa class of recommendation is of moderate strength based on moderate quality nonrandomized studies.

Special Report - American Heart Association/American College of Cardiology

The American Heart Association and the American College of Cardiology (2019) issued a special report on the use of risk assessment tools to guide decision-making in the primary prevention of atherosclerotic ASCVD.40 This report includes an algorithm of clinical approaches to incorporate CAC measurement in risk assessment for borderline- and intermediate-risk patients:

"For borderline-risk (10-year risk 5% to $<7.5\%$) and intermediate-risk (7.5% to $<20\%$) patients who are undecided regarding statin therapy, or when there is clinical uncertainty regarding the net benefit, consider the value of additional testing with measurement of CAC. If CAC is measured, interpret results as follows:

a. CAC score of 0 indicates that a borderline- or intermediate-risk individual is reclassified to a 10-y event rate lower than predicted, and below the threshold for benefit from a statin. Consider avoiding or postponing statin therapy unless there is a strong family history of premature ASCVD, history of diabetes mellitus, or heavy cigarette smoking. Consider repeat CAC measurement in 5 years if patient remains at borderline or intermediate risk.

b. CAC score 1 to 99 and <75th percentile for age/sex/race/ethnicity indicates that there is subclinical atherosclerosis present. This may be sufficient information to consider initiating statin therapy, especially in younger individuals, but does not indicate substantial reclassification of the 10-y risk estimate. Consider patient preferences and, if statin decision is postponed, consider repeat CAC scoring in 5 years.

c. CAC score 100 or >75th percentile for age/sex/race/ethnicity indicates that the individual is reclassified to a higher event rate than predicted, that is above the threshold for statin benefit. Statin therapy is more likely to provide benefit for such patients."

National Institute for Health and Care Excellence

For patients with "stable chest pain who cannot be excluded by clinical assessment alone," the National Institute for Health and Care Excellence recommended CT using 64-slice imaging.41

U.S. Preventive Services Task Force Recommendations

The U.S. Preventive Services Task Force (2018) updated its recommendations on the use of nontraditional or novel risk factors in assessing coronary heart disease risk in asymptomatic adults with no known cardiovascular disease.42,43 Calcium score was 1 of 3
nontraditional risk factors considered. Reviewers concluded the current evidence was insufficient to assess the balance of benefits and harms of adding any of the nontraditional risk factors studied to traditional risk assessment in asymptomatic adults with no known cardiovascular disease.

Medicare National Coverage

There is no national coverage determination. In the absence of a national coverage determination, coverage decisions are left to the discretion of local Medicare carriers.

REFERENCES

1. Blue Cross and Blue Shield Association Technology Evaluation Center (TEC). Diagnosis and screening for coronary artery disease with electron beam computed tomography. TEC Assessments. 1998;Volume 13:Tab 27.

POLICY HISTORY - THIS POLICY WAS APPROVED BY THE FEP® PHARMACY AND MEDICAL POLICY COMMITTEE ACCORDING TO THE HISTORY BELOW:

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>December 2011</td>
<td>New policy</td>
<td></td>
</tr>
<tr>
<td>June 2012</td>
<td>Replace policy</td>
<td>Policy statement changed to not medically necessary.</td>
</tr>
<tr>
<td>September 2013</td>
<td>Replace policy</td>
<td>Policy updated with literature search; references added and deleted. No change in policy statement.</td>
</tr>
<tr>
<td>September 2014</td>
<td>Replace policy</td>
<td>Policy updated with literature review, adding references 7, 11, 21, 22, 24-26, 29, 31 and 32. Editorial changes were made to the rationale and summary. No changes were made to the policy statement.</td>
</tr>
<tr>
<td>September 2015</td>
<td>Replace policy</td>
<td>Policy updated with literature review; references 12, 16, 24, 26, 29, 31, and 38 added. Policy statement unchanged.</td>
</tr>
<tr>
<td>December 2016</td>
<td>Replace policy</td>
<td>Policy updated with literature review; references 2, 15, and 37 added. Policy statement unchanged.</td>
</tr>
<tr>
<td>December 2017</td>
<td>Replace policy</td>
<td>Policy updated with literature review through July 26, 2017; references 2-7, 11, 14, 16, 18, 24-25, 31-33, and 40 added. Policy statement unchanged but “not medically necessary” corrected to “investigational”.</td>
</tr>
<tr>
<td>December 2018</td>
<td>Replace policy</td>
<td>Policy updated with literature review through August 9, 2018; references 3-5 and 40-42 added. Policy statement unchanged.</td>
</tr>
</tbody>
</table>

The policies contained in the FEP Medical Policy Manual are developed to assist in administering contractual benefits and do not constitute medical advice. They are not intended to replace or substitute for the independent medical judgment of a practitioner or other health care professional in the treatment of an individual member. The Blue Cross and Blue Shield Association does not intend by the FEP Medical Policy Manual, or by any particular medical policy, to recommend, advocate, encourage or discourage any particular medical technologies. Medical decisions relative to medical technologies are to be made strictly by members/patients in consultation with their health care providers. The conclusion that a particular service or supply is medically necessary does not constitute a representation or warranty that the Blue Cross and Blue Shield Service Benefit Plan covers (or pays for) this service or supply for a particular member.
<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>December 2019</td>
<td>Replace policy</td>
<td>Policy updated with literature review through July 29, 2019; references added. Added Supplemental Information section updated. Clarification added to policy objective "review does not address computed tomography coronary artery calcium scoring for asymptomatic patients due to coverage eligibility." Policy statement unchanged.</td>
</tr>
<tr>
<td>December 2020</td>
<td>Replace policy</td>
<td>Policy updated with literature review through August 4, 2020; references added. Policy statements unchanged.</td>
</tr>
</tbody>
</table>