Oncologic Applications of Positron Emission Tomography Scanning

Description

Positron emission tomography (PET) scans are based on the use of positron-emitting radionuclide tracers coupled to organic molecules, such as glucose, ammonia, or water. The radionuclide tracers simultaneously emit two high-energy photons in opposite directions that can be simultaneously detected (referred to as coincidence detection) by a PET scanner, comprising multiple stationary detectors that encircle the area of interest.

The utility of PET scanning for the diagnosis, staging, and restaging, and surveillance of malignancies varies by type of cancer. In general, PET scanning can distinguish benign from malignant masses in certain circumstances and improve the accuracy of staging by detecting additional disease not detected by other imaging modalities. Therefore, PET scanning for diagnosis and staging of malignancies can be considered medically necessary when specific criteria are met for specific cancers, as outlined in the policy statements. For the follow-up, after initial diagnosis and staging have been performed, there are a few situations in which PET can improve detection of recurrence, and lead to changes in management that improve the net health outcome.

OBJECTIVE

The objective of this evidence review is to examine whether the use of positron emission tomography for the diagnosis, staging, and restaging, and/or surveillance of various carcinomas improves the net health outcome in individuals with cancer.

POLICY STATEMENT

All policy statements apply to both positron emission tomography (PET) scans and PET plus computed tomography (CT) scans, ie, PET scans with or without PET/CT fusion.

For the clinical situations indicated that may be considered medically necessary, this assumes that the results of the PET scan will influence treatment decisions. If the results will not influence treatment decisions, these situations would be considered not medically necessary.

Bladder Cancer

PET scanning may be considered medically necessary in the staging or restaging of muscle-invasive bladder cancer when CT or magnetic resonance imaging are not indicated or remained inconclusive on distant metastasis.

PET scanning is considered investigational for bladder tumors that have not invaded the muscle (stage less than cT2).

Bone Sarcoma

PET scanning may be considered medically necessary in the staging or restaging of Ewing sarcoma and osteosarcoma.

PET scanning is considered investigational in the staging of chondrosarcoma.

Brain Cancer

PET scanning may be considered medically necessary in the staging or restaging of brain cancer.

Breast Cancer

PET scanning may be considered medically necessary in the staging or restaging of breast cancer for the following application:

- Detecting locoregional or distant recurrence or metastasis (except axillary lymph nodes) when suspicion of disease is high and other imaging is inconclusive.

The policies contained in the FEP Medical Policy Manual are developed to assist in administering contractual benefits and do not constitute medical advice. They are not intended to replace or substitute for the independent medical judgment of a practitioner or other health care professional in the treatment of an individual member. The Blue Cross and Blue Shield Association does not intend by the FEP Medical Policy Manual, or by any particular medical policy, to recommend, advocate, encourage or discourage any particular medical technologies. Medical decisions relative to medical technologies are to be made strictly by members/patients in consultation with their health care providers. The conclusion that a particular service or supply is medically necessary does not constitute a representation or warranty that the Blue Cross and Blue Shield Service Benefit Plan covers (or pays for) this service or supply for a particular member.
PET scanning is considered **investigational** in the evaluation of breast cancer for all other applications, including but not limited to the following:

- Differential diagnosis in patients with suspicious breast lesions or an indeterminate or low suspicion finding on mammography
- Staging axillary lymph nodes.
- Predicting pathologic response to neoadjuvant therapy for locally advanced disease.

Cervical Cancer

PET scanning may be considered **medically necessary** in the initial staging of patients with locally advanced cervical cancer.

PET scanning may be considered **medically necessary** in the evaluation of known or suspected recurrence.

Colorectal Cancer

PET scanning may be considered **medically necessary** as a technique for

- Staging or restaging to detect and assess resectability of hepatic or extrahepatic metastases of colorectal cancer, and
- To evaluate a rising and persistently elevated carcinoembryonic antigen levels when standard imaging, including CT scan, is negative.

PET scanning is considered **investigational** as:

- A technique to assess the presence of scarring vs local bowel recurrence in patients with previously resected colorectal cancer.
- A technique contributing to radiotherapy treatment planning.

Endometrial Cancer

PET scanning is considered **medically necessary** in the:

- Detection of lymph node metastases, and
- Assessment of endometrial cancer recurrence.

Esophageal Cancer

PET scanning may be considered **medically necessary** in the:

- Staging of esophageal cancer, and
- Determining response to preoperative induction therapy.

PET scanning is considered **investigational** in other aspects of the evaluation of esophageal cancer, including but not limited to the following applications:

- Detection of primary esophageal cancer.

Gastric Cancer

PET scanning may be considered **medically necessary** in the:

- Initial diagnosis and staging of gastric cancer, and
- Evaluation for recurrent gastric cancer after surgical resection, when other imaging modalities are inconclusive.

Head and Neck Cancer

PET scanning may be considered **medically necessary** in the evaluation of head and neck cancer in the

- Initial diagnosis of suspected cancer,
- Initial staging of disease, and restaging of residual or recurrent disease during follow-up, and

Lung Cancer

PET scanning may be considered **medically necessary** for any of the following applications:

- Patients with a solitary pulmonary nodule as a single scan technique (not dual-time) to distinguish between benign and malignant disease when prior CT scan and chest x-ray findings are inconclusive or discordant,
- As staging or restaging technique in those with known non-small-cell lung cancer, and
- To determine resectability for patients with a presumed solitary metastatic lesion from lung cancer.

PET scanning may be considered **medically necessary** in staging of small-cell lung cancer if limited stage is suspected based on standard imaging.

PET scanning is considered **investigational** in staging of small-cell lung cancer if extensive stage is established and in all other aspects of managing small-cell lung cancer.
Lymphoma, Including Hodgkin Disease

PET scanning may be considered medically necessary as a technique for staging lymphoma either during initial staging or for restaging at follow-up.

Melanoma

PET scanning may be considered medically necessary as a technique for assessing extranodal spread of malignant melanoma at initial staging or at restaging during follow-up treatment for advanced disease (stage III or IV).

PET scanning is considered investigational in managing stage 0, I, or II melanoma.

PET scanning is considered investigational as a technique to detect regional lymph node metastases in patients with clinically localized melanoma who are candidates to undergo sentinel node biopsy.

Multiple Myeloma

PET scanning may be considered medically necessary in the staging or restaging of multiple myeloma, particularly if the skeletal survey is negative.

Neuroendocrine tumors

PET scanning with gallium 68 may be considered medically necessary as a technique for staging neuroendocrine tumors either during initial staging or for restaging at follow-up.

PET scanning with other radiotracers is considered investigational in all aspects of managing neuroendocrine tumors.

Ovarian Cancer

PET scanning may be considered medically necessary in the evaluation of patients with signs and/or symptoms of suspected ovarian cancer recurrence (restaging) when standard imaging, including CT scan, is inconclusive.

PET scanning is considered investigational in the initial evaluation of known or suspected ovarian cancer in all situations.

Pancreatic Cancer

PET scanning may be considered medically necessary in the initial diagnosis and staging of pancreatic cancer when other imaging and biopsy are inconclusive.

PET scanning is considered investigational as a technique to evaluate other aspects of pancreatic cancer.

Penile cancer

PET scanning is considered investigational in all aspects of managing penile cancer.

Prostate Cancer

PET scanning with carbon 11 choline and fluorine 18 fluciclovine may be medically necessary for evaluating suspected or biochemically recurrent prostate cancer after primary treatment to detect small volume disease in soft tissues.

PET scanning with gallium 68 is considered investigational in all aspects of managing prostate cancer.

PET scanning for all other indications in known or suspected prostate cancer is considered investigational.

Renal cell Carcinoma

PET scanning is considered investigational in all aspects of managing renal cancer.

Soft Tissue Sarcoma

PET scanning is considered investigational in evaluation of soft tissue sarcoma, including but not limited to the following applications:

- Distinguishing between benign lesions and malignant soft tissue sarcoma,
- Distinguishing between low-grade and high-grade soft tissue sarcoma,
- Detecting locoregional recurrence,
- Detecting distant metastasis.

PET scanning is considered medically necessary for evaluating response to imatinib and other treatments for gastrointestinal stromal tumors.

Testicular Cancer

PET scanning may be considered medically necessary in evaluation of residual mass following chemotherapy of stage IIB and III seminomas. (The scan should be completed no sooner than 6 weeks after chemotherapy.)

Except as noted above for seminoma, PET scanning is considered investigational in evaluation of testicular cancer, including but not limited to the following applications:

- Initial staging of testicular cancer,
- Distinguishing between viable tumor and necrosis/fibrosis after treatment of testicular cancer, and
• Detection of recurrent disease after treatment of testicular cancer.

Thyroid Cancer

PET scanning may be considered medically necessary in the restaging of patients with differentiated thyroid cancer when thyroglobulin levels are elevated and whole-body iodine-131 imaging is negative.

PET scanning is considered investigational in the evaluation of known or suspected differentiated or poorly differentiated thyroid cancer in all other situations.

Cancer of Unknown Primary

PET scanning may be considered medically necessary in patients with a cancer of unknown primary who meet ALL of the following criteria:

- In patients with a single site of disease outside the cervical lymph nodes, and
- Patient is considering local or regional treatment for a single site of metastatic disease, and
- After a negative workup for an occult primary tumor, and
- PET scan will be used to rule out or detect additional sites of disease that would eliminate the rationale for local or regional treatment.

PET scanning is considered investigational for other indications in patients with a cancer of unknown primary, including, but not limited to the following:

- As part of the initial workup of a cancer of unknown primary, and
- As part of the workup of patients with multiple sites of disease.

Cancer Surveillance

PET scanning is considered investigational when used as a surveillance tool for patients with cancer or with a history of cancer. A scan is considered surveillance if performed more than 6 months after completion of cancer therapy (12 months for lymphoma) in patients without objective signs or symptoms suggestive of cancer recurrence (see Policy Guidelines section).

POLICY GUIDELINES

Patient Selection

As with any imaging technique, the medical necessity of positron emission tomography (PET) scanning depends in part on what imaging techniques are used before or after the PET scanning. Due to its expense, PET scanning is typically considered after other techniques, such as computed tomography (CT), magnetic resonance imaging (MRI), or ultrasonography, provide inconclusive or discordant results. In patients with melanoma or lymphoma, PET scanning may be considered an initial imaging technique. If so, the medical necessity of subsequent imaging during the same diagnostic evaluation is unclear. Thus, PET should be considered for the medically necessary indications above only when standard imaging (eg, CT, MRI) is inconclusive or not indicated.

Patient selection criteria for PET scanning also may be complex. For example, it may be difficult to determine from claims data whether a PET scan in a patient with malignant melanoma is being done primarily to evaluate extranodal disease or regional lymph nodes. Similarly, it may be difficult to determine whether a PET scan in a patient with colorectal cancer is being performed to detect hepatic disease or evaluate local recurrence. Due to the complicated hierarchy of imaging options in patients with malignancy and complex patient selection criteria, a possible implementation strategy for this policy is its use for retrospective review, possibly focusing on cases with multiple imaging tests, including PET scans.

Use of PET scanning for surveillance as described in the policy statement and policy rationale refers to the use of PET to detect disease in asymptomatic patients at various intervals. This is not the same as the use of PET for detecting recurrent disease in symptomatic patients; these applications of PET are considered within tumor-specific categories in the policy statements.

A PET scan involves 3 separate activities: (1) manufacture of the radiopharmaceutical, which may be on site or at a regional center with delivery to the institution performing PET; (2) actual performance of the PET scanner; and (3) interpretation of the results. CPT and HCPCS codes are available to code for PET scans. See the Codes table for details.

When the radiopharmaceutical is provided by an outside distribution center, there may be an additional separate charge, or this charge may be passed through and included in the hospital bill. In addition, an extra transportation charge will be likely for radiopharmaceuticals that are not manufactured on site.

The Centers for Medicare & Medicaid Services added 2 new modifiers in 2009 to facilitate the changes in the Medicare national coverage policy for PET. The modifiers are:

Pi - Positron emission tomography (PET) or PET/computed tomography (CT) to inform the initial treatment strategy of tumors that are biopsy proven or strongly suspected of being cancers based on other diagnostic testing, 1 per cancer diagnosis

PS - Positron emission tomography (PET) or PET/computed tomography (CT) to inform the subsequent treatment strategy of cancerous tumors when the beneficiary's treating physician determines that the PET study is needed to inform subsequent anti-tumor strategy.

BENEFIT APPLICATION

Experimental or investigational procedures, treatments, drugs, or devices are not covered (See General Exclusion Section of brochure).

FDA REGULATORY STATUS

The Food and Drug Administration website includes various PET-related documents. As of August 2019, the following radiopharmaceuticals have been granted approval by the Food and Drug Administration to be used with PET for carcinoma-related indications (see Table 1).

<table>
<thead>
<tr>
<th>Radiopharmaceutical</th>
<th>Manufacturer</th>
<th>Name</th>
<th>Carcinoma-Related Indication With PET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon-11 choline (C-11)</td>
<td>Various</td>
<td>Suspected prostate cancer recurrence based on elevated blood PSA after therapy and noninformative bone scintigraphy, CT, or MRI</td>
<td></td>
</tr>
<tr>
<td>Fluorine-18 fluorodeoxyglucose (FDG)</td>
<td>Various</td>
<td>Suspected or existing diagnosis of cancer, all types</td>
<td></td>
</tr>
</tbody>
</table>

The policies contained in the FEP Medical Policy Manual are developed to assist in administering contractual benefits and do not constitute medical advice. They are not intended to replace or substitute for the independent medical judgment of a practitioner or other health care professional in the treatment of an individual member. The Blue Cross and Blue Shield Association does not intend by the FEP Medical Policy Manual, or by any particular medical policy, to recommend, advocate, encourage or discourage any particular medical technologies. Medical decisions relative to medical technologies are to be made strictly by members/patients in consultation with their health care providers. The conclusion that a particular service or supply is medically necessary does not constitute a representation or warranty that the Blue Cross and Blue Shield Service Benefit Plan covers (or pays for) this service or supply for a particular member.
Suspected prostate cancer recurrence based on elevated blood PSA levels after treatment

Localization of somatostatin receptor-positive NETs in adult and pediatric patients

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Manufacturer</th>
<th>Product Name</th>
<th>Medical Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluorine-18 fluciclovine</td>
<td>Blue Earth Diagnostics</td>
<td>Axumin™</td>
<td>Suspected prostate cancer recurrence based on elevated blood PSA levels after treatment</td>
</tr>
<tr>
<td>Gallium-68 dotatate</td>
<td>Advanced Accelerator Applications</td>
<td>NETSPOT™</td>
<td>Localization of somatostatin receptor-positive NETs in adult and pediatric patients</td>
</tr>
</tbody>
</table>

CT: computerized tomography; MRI: magnetic resonance imaging; NET: neuroendocrine tumors; PET: positron emission tomography; PSA: prostate-specific antigen.

Rationale

Summary of Evidence

Bladder Cancer

For individuals who have suspected or diagnosed bladder cancer in need of staging or restaging information who receive fluorine 18 (18F) coupled with fluorodeoxyglucose (FDG) positron emission tomography (PET) or FDG-PET/computed tomography (CT), FDG-PET or FDG-PET/CT; the evidence includes a systematic review and meta-analysis. The relevant outcome is test validity. Pooled analyses showed relatively high sensitivity and specificity. Clinical guidelines include PET and PET/CT as considerations in staging bladder cancer, though CT, magnetic resonance imaging, and chest radiographs are also appropriate techniques for staging purposes. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who are asymptomatic after completing bladder cancer treatment who receive FDG-PET or FDG-PET/CT, there is no evidence. The relevant outcome is test validity. The evidence is insufficient to determine the effects of the technology on health outcomes.

Bone Sarcoma

For individuals who have suspected or diagnosed bone sarcoma and in need of staging or restaging information who receive FDG-PET or FDG-PET/CT, the evidence includes systematic reviews and meta-analyses. The relevant outcome is test validity. Pooled analyses have shown that PET or PET/CT can effectively diagnose and stage bone sarcoma. PET or PET/CT has high sensitivities and specificities in detecting metastases in bone and lymph nodes; however, the tests have low sensitivity in detecting lung metastases. Clinical guidelines include PET and CT to inform management decisions that may offer clinical benefit. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who are asymptomatic after completing bone sarcoma treatment who receive FDG-PET or FDG-PET/CT, there is no evidence. The relevant outcome is test validity. The evidence is insufficient to determine the effects of the technology on health outcomes.

Brain Tumors

For individuals who have suspected or diagnosed brain tumors and in need of staging or restaging information who have suspected brain tumor who receive FDG-PET, fluorine 18 fluoro-ethyl-tyrosine PET (18F-FET-PET), or carbon 11 (11C) methionine PET, the evidence includes several systematic reviews and meta-analyses. The relevant outcome is test validity. Pooled analyses have shown that PET or PET/CT can be effective in distinguishing brain tumors from normal tissue. Indirect comparisons between the radiotracers 11C-methionine and FDG have shown that 11C-methionine may have better diagnostic performance. Clinical guidelines include PET to inform management decisions that may offer clinical benefit. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who are asymptomatic after completing brain sarcoma treatment who receive FDG-PET, fluorine 18 fluoro-ethyl-tyrosine-PET, or 11C-methionine PET, the evidence includes systematic reviews and meta-analyses. The relevant outcome is test validity. Pooled analyses did not support the use of PET for surveillance of brain cancer following treatment. The evidence is insufficient to determine that the technology results in a meaningful improvement in the net health outcome.

Breast Cancer

For individuals who have diagnosed breast cancer and inconclusive results from other imaging techniques who receive adjunctive FDG-PET or FDG-PET/CT for staging or restaging, the evidence includes meta-analyses. The relevant outcome is test validity. While studies included in the meta-analyses reported variability in estimates of sensitivity and specificity, FDG-PET or FDG-PET/CT may be helpful in situations in which standard staging results are equivocal or suspicious, particularly in patients with locally advanced or metastatic disease. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have suspected or diagnosed breast cancer and in need of staging or restaging information who receive FDG-PET or FDG-PET/CT, the evidence includes a TEC Assessment, several systematic reviews, and meta-analyses. The relevant outcome is test validity. There is no evidence supporting the use of PET in diagnosing breast cancer. The false-negative rates (5.5%-8.5%) using PET in patients with breast cancer can be considered unacceptable, given that breast biopsy can provide more definitive results. PET/CT may be considered for the detection of metastases only when results from other imaging techniques are inconclusive. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who are asymptomatic after completing breast cancer treatment who receive FDG-PET or FDG-PET/CT, there is no evidence. The relevant outcome is test validity. The evidence is insufficient to determine the effects of the technology on health outcomes.
Cervical Cancer
For individuals who have diagnosed cervical cancer and in need of staging or restaging information who receive FDG-PET or FDG-PET/CT, the evidence includes an Agency for Healthcare Research and Quality (AHRQ) report and a meta-analysis. The relevant outcome is test validity. Pooled results have shown that PET can be used for staging or restaging and for detecting recurrent disease. Clinical guidelines include PET and CT to inform management decisions that may offer clinical benefit. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have suspected cervical cancer or who are asymptomatic after completing cervical cancer treatment who receive FDG-PET or FDG-PET/CT, there is no evidence. Relevant outcomes are test accuracy and test validity. The evidence is insufficient to determine the effects of the technology on health outcomes.

Colorectal Cancer
For individuals who have diagnosed CRC and in need of staging or restaging information who receive FDG-PET or FDG-PET/CT, the evidence includes a TEC Assessment and several meta-analyses. The relevant outcome is test validity. Several pooled analyses evaluating staging or restaging using PET or PET/CT resulted in wide ranges of sensitivities and specificities, from 16% to 99%. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have suspected CRC or who are asymptomatic after completing CRC treatment who receive FDG-PET or FDG-PET/CT, the evidence includes a TEC Assessment and meta-analysis. The relevant outcome is test validity. A meta-analysis evaluating the diagnostic accuracy of PET or PET/CT showed high sensitivity but low specificity. The evidence for the use of PET or PET/CT does not show a benefit over the use of contrast CT in patients with CRC. The evidence is insufficient to determine the effects of the technology on health outcomes.

Endometrial Cancer
For individuals who have diagnosed endometrial cancer in need of staging or restaging information or who are asymptomatic after completing endometrial cancer treatment who receive FDG-PET or FDG-PET/CT, the evidence includes a systematic review and meta-analysis. The relevant outcome is test validity. Pooled estimates from the meta-analysis showed high sensitivities and specificities for FDG-PET/CT in detecting lymph node metastases and endometrial cancer recurrence following treatment. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have suspected endometrial cancer or who are asymptomatic after completing endometrial cancer treatment who receive FDG-PET or FDG-PET/CT, the evidence includes meta-analyses. The relevant outcome is test validity. Pooled analyses have shown adequate sensitivities but low specificities. The evidence is insufficient to determine the effects of the technology on health outcomes.

Gastric Cancer
For individuals who have suspected or diagnosed with gastric cancer and in need of staging or restaging information, who receive FDG-PET or FDG-PET/CT, the evidence includes several meta-analyses. The relevant outcome is test validity. Pooled estimates have shown high sensitivities and specificities compared to other diagnostic imaging techniques. Clinical guidelines include PET and CT to inform management decisions that may offer clinical benefit. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have suspected gastric cancer or who are asymptomatic after completing gastric cancer treatment who receive FDG-PET or FDG-PET/CT, the evidence includes meta-analyses. The relevant outcome is test validity. Pooled analyses have shown low sensitivities and specificities. The evidence is insufficient to determine the effects of the technology on health outcomes.

Head and Neck Cancer
For individuals who have suspected or diagnosed head and neck cancer who need staging or restaging information who receive FDG-PET or FDG-PET/CT, the evidence includes a TEC Assessment and several meta-analyses. The relevant outcome is test validity. In patients with head and neck cancers, PET and PET/CT are better able to detect local and metastatic disease compared with other imaging techniques. Evidence has also shown that FDG-PET/CT may be useful in predicting response to therapy. Two meta-analyses calculated the ability of FDG-PET or PET/CT to detect the residual or recurrent disease during various stages of treatment and another meta-analysis calculated the ability of positive PET or PET/CT results to predict OS and event-free survival. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who are asymptomatic after completing head and neck cancer treatment who receive FDG-PET or FDG-PET/CT, there is no evidence. The relevant outcome is test validity. The evidence is insufficient to determine the effects of the technology on health outcomes.

Non-Small-Cell Lung Cancer (NSCLC)
For individuals who have suspected NSCLC and inconclusive results from other imaging techniques or who have diagnosed NSCLC and in need of staging or restaging information who receive FDG-PET or FDG-PET/CT, the evidence includes several meta-analyses. The relevant outcome is test validity. Pooled analyses have shown that PET and PET/CT have better diagnostic performance than conventional imaging techniques. Clinical guidelines include PET/CT to inform management decisions that may offer clinical benefit. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have suspected NSCLC or who are asymptomatic after completing NSCLC treatment who receive FDG-PET or FDG-PET/CT, there is no evidence. The relevant outcome is test validity. The evidence is insufficient to determine the effects of the technology on health outcomes.

Small-Cell Lung Cancer (SCLC)
For individuals with diagnosed SCLC and in need of staging or restaging information who receive FDG-PET or FDG-PET/CT, the evidence includes a systematic review and a meta-analysis. The relevant outcome is test validity. While the quality of the studies was considered low, PET and PET/CT can be considered for staging or restaging in patients with SCLC if a limited stage is suspected. Clinical guidelines include PET/CT to inform management decisions that may offer clinical benefit. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have suspected SCLC or who are asymptomatic after completing SCLC treatment who receive FDG-PET or FDG-PET/CT, there is no evidence. The relevant outcomes are test accuracy and test validity. The evidence is insufficient to determine the effects of the technology on health outcomes.

Hodgkin and Non-Hodgkin Lymphoma
For individuals who have suspected or diagnosed Hodgkin and non-Hodgkin lymphoma in need of staging or restaging information who receive FDG-PET or FDG-PET/CT, the evidence includes a TEC Assessment and several meta-analyses. The relevant outcome is test validity. PET and PET/CT have been found to provide useful information in the management of Hodgkin and non-Hodgkin lymphoma.

The policies contained in the FEP Medical Policy Manual are developed to assist in administering contractual benefits and do not constitute medical advice. They are not intended to replace or substitute for the independent medical judgment of a practitioner or other health care professional in the treatment of an individual member. The Blue Cross and Blue Shield Association does not intend by the FEP Medical Policy Manual, or by any particular medical policy, to recommend, advocate, encourage or discourage any particular medical technologies. Medical decisions relative to medical technologies are to be made strictly by members/patients in consultation with their health care providers. The conclusion that a particular service or supply is medically necessary does not constitute a representation or warranty that the Blue Cross and Blue Shield Service Benefit Plan covers (or pays for) this service or supply for a particular member.
luphoma. The Deauville 5-point scale was developed based on PET results and can be used for staging and treatment response for patients with lymphoma. Clinical guidelines include PET/CT to inform management decisions that may offer clinical benefit. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who are asymptomatic after completing Hodgkin lymphoma treatment who receive FDG-PET or FDG-PET/CT, there is no evidence. The relevant outcome is test validity. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who are asymptomatic after completing non-Hodgkin lymphoma treatment who receive FDG-PET or FDG-PET/CT, there is no evidence. The relevant outcome is test validity. The evidence is insufficient to determine the effects of the technology on health outcomes.

Melanoma

For individuals who have suspected or diagnosed stage I or II melanoma and in need of staging or restaging information who receive FDG-PET or FDG-PET/CT, the evidence includes a TEC Assessment. The relevant outcome is test validity. Evidence has shown PET and PET/CT are not as beneficial as the reference standard (sentinel node biopsy) for assessing regional lymph nodes. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have diagnosed advanced melanoma (stage III or IV) and in need of staging or restaging information who receive FDG-PET or FDG-PET/CT, the evidence includes a TEC Assessment and a meta-analysis. The relevant outcome is test validity. Evidence has shown PET and PET/CT can detect systemic metastases in patients with advanced melanoma. Clinical guidelines include PET/CT for staging or restaging stage III or IV disease and for surveillance. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who are asymptomatic after completing melanoma treatment who receive FDG-PET or FDG-PET/CT, the evidence includes retrospective and observational studies. The relevant outcome is test validity. At the discretion of the physician, imaging surveillance can be considered every 3 to 12 months. Because recurrences usually occur within three years, screening asymptomatic patients beyond three to five years is not recommended. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

Multiple Myeloma

For individuals who have suspected or diagnosed multiple myeloma in need of staging or restaging information who receive FDG-PET or FDG-PET/CT, the evidence includes two meta-analyses, one of which conducted a meta-analysis. The relevant outcome is test validity. The meta-analysis reported high sensitivity in detecting extramedullary lesions in patients with multiple myeloma. The other systematic review compared FDG-PET with whole-body x-ray and reported that FDG-PET was more sensitive in detecting myeloma bone lesions. Clinical guidelines include PET/CT on the list of imaging techniques that may be useful in certain circumstances, to discern active from smoldering myeloma, particularly if the skeletal survey is negative. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who are asymptomatic after completing multiple myeloma treatment who receive FDG-PET or FDG-PET/CT, there is no evidence. The relevant outcome is test validity. The evidence is insufficient to determine the effects of the technology on health outcomes.

Neuroendocrine Tumors

For individuals who have suspected or diagnosed neuroendocrine tumors and in need of staging or restaging information who receive FDG-PET or FDG-PET/CT, the evidence includes two meta-analyses. The relevant outcome is test validity. The evidence did not compare PET or PET/CT with other modalities and, therefore, did not provide comparative effectiveness information. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have suspected or diagnosed neuroendocrine tumors and in need of staging or restaging information who receive 68Ga-PET or 68Ga-PET/CT, the evidence includes several systematic reviews with meta-analyses. The relevant outcome is test validity. The meta-analyses showed relatively high sensitivities and specificities compared with other imaging techniques in the diagnosis and staging of neuroendocrine tumors. Clinical guidelines support the use of the 68Ga radiotracer in the diagnosis and staging of neuroendocrine tumors. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who are asymptomatic after completing neuroendocrine tumor treatment who receive 68Ga-PET or 68Ga-PET/CT, there is no evidence. The evidence is insufficient to determine the effects of the technology on health outcomes.

Ovarian Cancer

For individuals who have diagnosed ovarian cancer and in need of staging or restaging information who receive FDG-PET or FDG-PET/CT, the evidence includes an AHRQ systematic review and several meta-analyses. The relevant outcome is test validity. Pooled sensitivities and specificities have supported the use of PET and PET/CT for the detection of recurrent ovarian cancer. Clinical guidelines include PET/CT to inform management decisions that may offer clinical benefit. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have suspected ovarian cancer or who are asymptomatic after completing ovarian cancer treatment who receive FDG-PET or FDG-PET/CT, there is no evidence. The relevant outcome is test validity. The evidence is insufficient to determine the effects of the technology on health outcomes.

Pancreatic Cancer

For individuals who have suspected or diagnosed pancreatic cancer and with inconclusive results from other imaging techniques who receive adjunctive FDG-PET or FDG-PET/CT for staging or restaging, the evidence includes a TEC Assessment and a systematic review. The relevant outcome is test validity. The evidence has shown that PET and PET/CT do not have a high enough negative predictive value (NPV) to surpass current standard decision thresholds. Therefore, PET or PET/CT should only be considered if the results from standard staging methods are inconclusive. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have suspected or diagnosed pancreatic cancer and in need of staging or restaging information who receive FDG-PET or FDG-PET/CT, the evidence includes an AHRQ systematic review, a TEC Assessment, and a meta-analysis published after the review and assessment. The relevant outcome is test validity. The evidence has shown that PET and PET/CT do not have a high enough NPV to surpass current standard decision thresholds. Therefore, PET or PET/CT should only be considered if the results from standard staging methods are inconclusive. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who are asymptomatic after completing pancreatic cancer treatment who receive F-FDG-PET or F-FDG-PET/CT, there is no evidence. The relevant outcome is test validity. The evidence is insufficient to determine the effects of the technology on health outcomes.

Penile Cancer

For individuals who have suspected or diagnosed penile cancer and in need of staging or restaging information who receive FDG-PET or FDG-PET/CT, the evidence includes a systematic review and a meta-analysis. The relevant outcome is test validity. The evidence has shown that PET had a low sensitivity, and no comparisons were made with other modalities. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who are asymptomatic after completing penile cancer treatment who receive FDG-PET or FDG-PET/CT, there is no evidence. The relevant outcome is test validity. The evidence is insufficient to determine the effects of the technology on health outcomes.
Prostate Cancer

For individuals who have suspected or diagnosed prostate cancer and in need of staging or restaging information who receive 11C-choline PET, 11C-choline PET/CT, fluorine 18 fluciclovine (18F-fluciclovine) PET, 18F-fluciclovine PET/CT, evidence includes several meta-analyses. The relevant outcome is test validity. Meta-analyses have reported that the choice of radiotracer affects the sensitivity and specificity of the scans, with most evidence showing that the use of 11C-choline or 18F-fluciclovine results in the highest sensitivities and specificities compared with FDG-PET and 11C-acetate. Of interest is a single study that investigated the use of PET/CT results to inform patient decisions on radiotherapy treatment plans. The study reported that 40% of the patients altered the extent of the treatment planned based on the PET/CT results. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who are asymptomatic after completing prostate cancer treatment who receive 11C-choline PET, 11C-choline PET/CT, 18F-fluciclovine PET, 18F-fluciclovine PET/CT, there is no evidence. The relevant outcome is test validity. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who have suspected or diagnosed prostate cancer and in need of staging or restaging information who receive 68Ga-PET or 68Ga-PET/CT, the evidence includes a meta-analysis of small single-institution studies. The relevant outcome is test validity. The evidence is limited, resulting in estimates with large confidence intervals. The evidence is insufficient to determine the effects of the technology on health outcomes.

Renal Cell Carcinoma (RCC)

For individuals who are diagnosed with RCC and in need of staging or restaging information who receive FDG-PET or FDG-PET/CT, the evidence includes a systematic review and meta-analysis. The relevant outcome is test validity. The review concluded that PET has the potential to detect metastatic or recurrent lesions in patients with RCC, but that additional prospective studies are needed. The evidence is insufficient to determine the effects of the technology on health outcomes.

Soft Tissue Sarcoma

For individuals who have diagnosed soft tissue sarcoma and in need of staging or restaging information who receive FDG-PET or FDG-PET/CT, the evidence includes a systematic review using PET for assessing response to imatinib. The relevant outcome is test validity. The review reported that PET had low diagnostic accuracy and there was a lack of studies comparing PET with alternative diagnostic modalities. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals with diagnosed soft tissue sarcoma and in need of rapid reading of response to imatinib treatment who receive FDG-PET or FDG-PET/CT, the evidence includes a systematic review. The relevant outcome is test validity. The review concluded that PET/CT can be used to monitor treatment response to imatinib, which can lead to individually adapted treatment strategies. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have suspected soft tissue sarcoma or who are asymptomatic after completing soft tissue sarcoma treatment who receive FDG-PET or FDG-PET/CT, the evidence includes a systematic review. The relevant outcome is test validity. The review concluded that there was insufficient evidence on the use of PET for the detection of locoregional recurrence. The evidence is insufficient to determine the effects of the technology on health outcomes.

Testicular Cancer

For individuals with diagnosed testicular cancer in need of staging or restaging information who receive FDG-PET or FDG-PET/CT, the evidence includes an AHRQ review and systematic review using PET for assessing response to imatinib. The relevant outcome is test validity. The review concluded that PET/CT can evaluate residual masses following chemotherapy for seminoma. Clinical guidelines include PET/CT to inform management decisions that may offer clinical benefit. There is no evidence supporting the use of PET or PET/CT in nonseminoma patients. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have suspected testicular cancer or who are asymptomatic after completing testicular cancer treatment who receive FDG-PET or FDG-PET/CT, there is no evidence. The relevant outcome is test validity. The evidence is insufficient to determine the effects of the technology on health outcomes.

Thyroid Cancer

For individuals with diagnosed thyroid cancer and in need of staging or restaging information who receive FDG-PET or FDG-PET/CT, the evidence includes systematic reviews and meta-analyses. The relevant outcome is test validity. Results have shown that PET or PET/CT can evaluate residual masses following chemotherapy for seminoma. Clinical guidelines include PET/CT to inform management decisions that may offer clinical benefit. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who have suspected thyroid cancer or who are asymptomatic after completing thyroid cancer treatment who receive FDG-PET or FDG-PET/CT, there is no evidence. The relevant outcome is test validity. The evidence is insufficient to determine the effects of the technology on health outcomes.

Cancer of Unknown Primary and Single-Site Metastatic Disease

For individuals with cancer of unknown primary and single-site metastatic disease who receive FDG-PET or FDG-PET/CT, the evidence includes a TEC Assessment. The relevant outcome is test validity. Studies reviewed in the Assessment showed that PET identified previously undetected metastases confirmed by biopsy. PET can contribute to the management of patients with cancer of unknown primary. Clinical guidelines include PET/CT to inform management decisions that may offer clinical benefit. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

SUPPLEMENTAL INFORMATION

Practice Guidelines and Position Statements

Bladder Cancer Guidelines

American College of Radiology

The American College of Radiology (ACR; 2018) issued an Appropriateness Criteria for pretreatment staging of muscle-invasive bladder cancer. The ACR stated that FDG-PET/CT "may be appropriate" for the pretreatment staging of muscle-invasive bladder cancer. However, the ACR cited CT, MRI, and chest radiographs as the most appropriate imaging techniques for pretreatment staging.

National Comprehensive Cancer Network

Current National Comprehensive Cancer Network (NCCN) guidelines for bladder cancer (v.4.2019) state that PET/CT "may be beneficial in selected patients with T2 (muscle-invasive disease) and in patients with ≥T3 disease" (category 2B). According to the guidelines, PET/CT may also be considered if metastasis is suspected in high-risk patients (category 2B). However, the guidelines note that "PET/CT should not be used to delineate the anatomy of the upper urinary tract" or in patients with nonmuscle invasive bladder cancer.
Bone Sarcoma Guidelines

Current NCCN guidelines for bone cancer (v.1.2020) state that PET/CT may be considered for:

- Workup of patients with chordoma, Ewing sarcoma, or osteosarcoma,
- Restaging in patients with Ewing sarcoma or osteosarcoma, and
- Surveillance of patients with Ewing sarcoma or osteosarcoma, every three months for two years, every four months during year three, every six months during years four and five, then once annually (category 2B).

Brain Cancer Guidelines

Current NCCN guidelines for brain cancer (v.1.2019) include these statements:

- PET can assess metabolism within the tumor and normal tissue by using radio-labeled tracers, which may be useful in differentiating tumor from radiation necrosis, may correlate with tumor grade, or provide an optimal area for biopsy.
- Limitations include the accuracy of interpretations and availability of equipment and isotopes.
- Close follow-up imaging, MR perfusion, MR spectroscopy, PET/CT imaging, and repeat surgery may be necessary if clinically indicated. Educate patients on the uncertainty of imaging as a whole, and the potential need for corollary testing to interpret scans.

Breast Cancer Guidelines

American College of Radiology

The ACR issued an Appropriateness Criteria for the initial workup and surveillance for local recurrence and distant metastases in asymptomatic women with stage I breast cancer. The ACR noted that FDG-PET/CT is usually not appropriate during initial workup or surveillance of these patients, to rule out metastases.

National Comprehensive Cancer Network

Current NCCN guidelines on breast cancer (v.2.2019) include an optional category 2B recommendation for FDG-PET/CT in the workup of stage IIIA breast cancer.

The NCCN recommends against FDG-PET/CT for lower stage breast cancer (I, II, or operable III) due to high false-negative rates in detecting low-grade lesions or lesions less than 1 cm; low sensitivity in detecting axillary node metastasis; the low prior probability of detectable metastases in these patients; and high false-positive rates. NCCN considers PET or PET/CT most helpful when "standard staging studies are equivocal or suspicious, especially in the setting of locally advanced or metastatic disease."

The NCCN guidelines do not recommend routine use of PET in asymptomatic patients for surveillance and follow-up after breast cancer treatment. When monitoring the metastatic disease, the guidelines note that PET is "challenging because of the absence of a reproducible, validated, and widely accepted set of standards for disease activity assessment."

Cervical Cancer Guidelines

Current NCCN guidelines on cervical cancer (v.4.2019) state that PET/CT may be considered under the following conditions:

- Part of the initial nonfertility and fertility-sparing workup for patients with stage I cervical cancer.
- Part of the initial staging workup for detection of stage II, III, or IV metastatic disease
- Follow-up/surveillance for stage I (only nonfertility sparing) through stage IV at three to six months after completion of therapy or if there is suspected recurrence or metastases. For stage II-IV, whole-body PET/CT is preferred.

Colorectal Cancer Guidelines

American College of Radiology

The ACR (2017) issued Appropriateness Criteria for the pretreatment staging of CRC. In the evaluation of distant metastases, the criteria stated that "routine use of PET/CT is likely not indicated; however, it may provide guidance in cases of advanced, bilobar liver disease to exclude extrahepatic metastases prior to surgical intent to cure."

National Comprehensive Cancer Network

Current NCCN guidelines for colon cancer (v.2.2019) state that PET/CT scanning for staging, baseline imaging, or routine follow-up and recommend consideration of a preoperative PET/CT scan at baseline only if prior anatomic imaging indicates the presence of potentially surgically curable M1 disease. For initial workup of nonmetastatic patients, the guidelines state "PET/CT does not supplant a contrast-enhanced diagnostic CT scan. PET/CT should only be used to evaluate an equivocal finding on a contrast-enhanced CT scan or in patients with strong contraindications to IV [intravenous] contrast."

For workup of proven metastatic synchronous adenocarcinoma, the guidelines state that PET/CT may be considered. PET/CT is not recommended for surveillance. NCCN has noted that PET/CT should not be used to assess response to chemotherapy. NCCN was divided on the appropriateness of PET/CT when carcinoembryonic antigen level is rising; PET/CT might be considered when imaging study results (eg, a good quality CT scan) are normal.

Current NCCN guidelines for rectal cancer (v.2.2019) state that PET/CT is "not routinely indicated" and "should only be used to evaluate an equivocal finding on a contrast-enhanced CT scan or in patients with strong contraindications to IV contrast." PET/CT is not recommended for restaging or for surveillance. PET/CT can be considered if serial carcinoembryonic antigen elevation occurs or if there is documented metastatic metastases.
Endometrial Cancer Guidelines

Current NCCN guidelines for endometrial cancer (v.3.2019) state that whole-body PET/CT can be considered in the initial workup, in both nonfertility and fertility-sparing management, if metastases are suspected in select patients (based on clinical symptoms, physical findings, or abnormal laboratory findings). PET/CT may also be considered for patients with suspected recurrence or metastases who are candidates for surgery/locoregional therapy. Following treatment, PET/CT can be considered in select patients for surveillance, if clarification is needed.

Esophageal Cancer Guidelines

Current NCCN guidelines for esophageal cancer (v.2.2019) indicate that PET/CT can be considered under the following conditions:

- Part of the initial workup if there is no evidence of M1 disease.
- To assess response to preoperative or definitive chemoradiation.
- For staging purposes, prior to surgery to obtain nodal distribution information.
- For surveillance of tumors with classification T1b, any N, imaging (CT chest/abdomen with contrast unless contraindicated or FDG-PET/CT) every six-nine months for the first two years, then annually up to five years.

The guidelines note that PET/CT for these indications is preferable to PET alone.

Gastric Cancer Guidelines

Current NCCN guidelines for gastric cancer (v.2.2019) indicate that FDG-PET/CT (but not PET alone) can be used as part of an initial workup if there is no evidence of metastatic disease. The guidelines note that the sensitivity of FDG-PET/CT is lower than for CT alone due to low tracer accumulation in diffuse and mucinous tumor types but specificity is higher. FDG-PET/CT adds value to the diagnostic workup with higher accuracy in staging (identifying tumor and pertinent nodal groups). The NCCN guidelines also indicate that FDG-PET/CT can be used to evaluate response to treatment, in cases of renal insufficiency or allergy to CT contrast. For surveillance in patients with stage II or III disease, FDG-PET/CT can be considered as clinically indicated but CT scan with oral and IV contrast is preferred.

Head and Neck Guidelines

Current NCCN guidelines on head and neck cancer (v.2.2019) indicate that PET/CT can be appropriate for disease evaluation, for detection of metastases or recurrence, and for evaluation of response to treatment (at a minimum of 12 weeks post treatment to reduce false-positive rate). There is no discussion on the use of PET/CT for surveillance.

Lung Cancer

NSCLC Guidelines

Current NCCN guidelines for NSCLC (v.6.2019) indicate that PET/CT can be used in the staging of the disease, detection of metastases, treatment planning, and detection of disease recurrence. The guidelines note that PET is “best performed before a diagnostic biopsy site is chosen in cases of high clinical suspicion for aggressive, advanced-stage tumors.” However, PET is not recommended for detection of brain metastasis from lung cancers. While PET/CT is not routinely recommended for surveillance after completion of definitive therapy, it may be considered to differentiate between true malignancies and benign conditions (eg, atelectasis, consolidation, and radiation fibrosis), which may have been detected by CT imaging. If PET/CT detects recurrent disease, biopsy confirmation is necessary prior to initiating additional treatment because FDG remains avid up to 2 years.

The American College of Chest Physicians (2013) issued guidelines for the diagnosis and management of NSCLC. The guidelines stated that RCTs support the use of PET or PET/CT scanning as a component of lung cancer treatment and recommended PET or PET/CT for staging, detection of metastases, and avoidance of noncurative surgical resections.

Small Cell Lung Cancer Guidelines

Current NCCN guidelines for SCLC (v.2.2019) indicate PET/CT can be used in the staging of the disease if limited stage is suspected. If extensive-stage is established, brain imaging, MRI (preferred), or CT with contrast is recommended. PET/CT “is not recommended for routine follow-up.”

Lymphoma Guidelines

Current NCCN guidelines for Hodgkin lymphoma (v.2.2019) and non-Hodgkin lymphoma (chronic lymphocytic leukemia/small lymphocytic lymphoma [v.5.2019], b-cell lymphomas [v.4.2019], hairy cell leukemia [v.3.2019], primary cutaneous lymphomas [v.2.2019], and T-cell lymphomas [v.2.2019]) indicate that PET/CT may be used in the diagnostic workup, staging, restaging, and evaluating treatment response. The guidelines recommend using the internationally recognized Deauville 5-point PET scale for initial staging and assessment of treatment response. The following PET/CT results are assigned the corresponding scores: 1=no uptake; 2=uptake ≤ mediastinum; 3=uptake > mediastinum but ≤ liver; 4=uptake moderately higher than liver; and 5=uptake markedly higher than liver and/or new lesions. The Deauville PET scores can be used to determine the course of treatment. The guidelines note that if PET/CT detects 3 or more skeletal lesions, the marrow may be involved. The guidelines also note that surveillance PET should not be done routinely due to risks for false-positives. Management decisions should not be based on PET scan alone; clinical or pathologic correlation is needed.

Melanoma Guidelines

Current NCCN guidelines for melanoma (v.2.2019) indicate that PET/CT can be used for staging and restaging more advanced disease (eg, stage III) in the presence of specific signs and symptoms. PET/CT is not recommended for stage I or II diseases. PET/CT also is listed as an option for surveillance screening for recurrence every 3 to 12 months (category 2B) at the physician’s discretion. Because most recurrences occur within the first three years, routine screening for asymptomatic recurrence is not recommended beyond three to five years. The guidelines note that the safety of PET/CT is of concern due to cumulative radiation exposure.
Multiple Myeloma Guidelines

Current NCCN guidelines for multiple myeloma (v.3.2019) include PET/CT to the list of imaging techniques that may be useful under certain circumstances, to discern active from smoldering myeloma, particularly if the skeletal survey is negative. PET/CT may also be considered to detect disease progression.

Neuroendocrine Tumors Guidelines

Current NCCN guidelines for neuroendocrine tumors (v.1.2019) have recommended somatostatin receptor-based imaging with PET/CT or PET/MRI, using \(^{18}\)Ga-dotatate as the radioactive tracer. The guidelines note that \(^{68}\)Ga-PET/CT or PET/MRI is more sensitive than somatostatin receptor scintigraphy for determining somatostatin receptor status. \(^{68}\)Ga-PET/CT or PET/MRI is recommended for diagnosis, staging, and restaging. FDG-PET may be considered in poorly differentiated carcinomas only in biopsy-proven neuroendocrine tumors of unknown primary. Neither \(^{68}\)Ga-PET/CT nor FDG-PET are recommended for surveillance. \(^{18}\)F-DOPA PET/CT is not discussed in the guidelines.

Ovarian Cancer Guidelines

American College of Radiology

The ACR Appropriateness Criteria (2018) on staging and follow-up of ovarian cancer have stated that PET/CT and MRI may be appropriate when lesions are indeterminate with contrast-enhanced CT.

National Comprehensive Cancer Network

Current NCCN guidelines for ovarian cancer (v.1.2019) indicate that PET/CT can be appropriate for indeterminate lesions if results will alter management. PET/CT may be considered for monitoring patients with stage II through IV ovarian cancer receiving primary chemotherapy if clinically indicated. PET/CT also can be considered if clinically indicated after complete remission, for follow-up and for monitoring for recurrence if CA-125 is rising or clinical relapse is suspected.

Pancreas Cancer Guidelines

Current NCCN guidelines for pancreatic cancer (v.3.2019) state "the role of PET/CT (without iodinated intravenous contrast) remains unclear...[PET/CT] may be considered after formal pancreatic CT protocol in high-risk patients to detect extrapancreatic metastasis. It is not a substitute for high-quality contrast-enhanced CT."

Penile Cancer Guidelines

Current NCCN guidelines for penile cancer (v.2.2019) states that PET/CT may be considered in patients with penile cancer for the evaluation of enlarged pelvic lymph nodes.

Prostate Cancer Guidelines

American College of Radiology

The ACR Appropriateness Criteria on the post treatment follow-up of patients with prostate cancer have stated that PET and PET/CT using \(^{11}C\)-choline or \(^{18}F\)-fluoride radiotracers is usually appropriate for patients with a clinical concern for residual or recurrent disease following radical prostatectomy, nonsurgical treatments, or systemic therapy.

National Comprehensive Cancer Network

Current NCCN guidelines for prostate cancer (v.3.2019) indicate that \(^{11}C\)-choline PET or PET/MRI may be considered for evaluating biochemical failure after primary treatment (ie, radiotherapy or radical prostatectomy). To evaluate progression, \(^{11}C\)-choline PET/CT or PET/MRI may be considered for soft tissue assessment and \(^{18}F\)-sodium fluoride PET/CT or PET/MRI may be considered for bone assessment. The guidelines note that \(^{18}F\)-sodium fluoride PET/CT or PET/MRI has greater sensitivity but lower specificity than standard bone scan imaging. FDG-PET should not be used routinely for initial assessment or in other settings, due to limited evidence of clinical utility.

Renal Cell Cancer Guidelines

Current NCCN guidelines for kidney cancer (v.2.2020) state that "The value of PET in RCC [renal cell carcinoma] remains to be determined. Currently, PET alone is not a tool that is standardly used to diagnose kidney cancer or follow for evidence of relapse after nephrectomy."

Soft Tissue Sarcoma Guidelines

Current NCCN guidelines for soft tissue sarcoma (v.3.2019) state that PET/CT may be useful in staging, prognostication, and grading. PET/CT can be useful in determining response to chemotherapy for lesions greater than 3 cm that are firm, deep, and not superficial. The guidelines also state that PET can provide information on imatinib activity after two to four weeks of therapy when rapid reading of activity is considered necessary; however, long-term PET follow-up is rarely indicated. The guidelines also indicate that PET can be used to assess the progression of the disease if results from other imaging techniques (CT or MRI) are inconclusive.
Testicular Cancer Guidelines

Current NCCN guidelines for testicular cancer (v.1.2019) support the use of PET to evaluate residual masses that are greater than 3 cm following primary treatment with chemotherapy (at ≥6 weeks post treatment). If a PET scan is negative, surveillance is recommended. If a PET scan is positive, resection or biopsy of the residual mass is recommended. The guidelines warn that there is "limited predictive value for PET/CT scan for residual masses." PET is not recommended for nonseminoma patients.

Thyroid Cancer Guidelines

Current NCCN guidelines for thyroid carcinoma continue to support the use of FDG-PET/CT in thyroid cancer evaluations, such as when iodine-131 imaging is negative and stimulated thyroglobulin is greater than 2 to 5 ng/mL.

Current NCCN guidelines for medullary thyroid cancer (v.1.2019) state that Ga-68 DOTATATE PET/CT may be considered as part of the diagnostic workup, and recommend contrast-enhanced CT with or without PET at 2 to 3 months postoperative surveillance. Additionally, PET/CT may be considered if the recurrent disease is suspected.

U.S. Preventive Services Task Force Recommendations

Not applicable.

Medicare National Coverage

Effective for claims with dates of service on and after June 11, 2013, the chart below summarizes national FDG PET coverage for oncologic conditions:

<table>
<thead>
<tr>
<th>FDG PET for Cancers by Tumor Type</th>
<th>Initial Treatment Strategy (formerly "diagnosis" & "staging")</th>
<th>Subsequent Treatment Strategy (formerly "restaging" & "monitoring response to treatment")</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorectal</td>
<td>Cover</td>
<td>Cover</td>
</tr>
<tr>
<td>Esophagus</td>
<td>Cover</td>
<td>Cover</td>
</tr>
<tr>
<td>Head and Neck (not thyroid, CNS)</td>
<td>Cover</td>
<td>Cover</td>
</tr>
<tr>
<td>Lymphoma</td>
<td>Cover</td>
<td>Cover</td>
</tr>
<tr>
<td>Non-small cell lung</td>
<td>Cover</td>
<td>Cover</td>
</tr>
<tr>
<td>Ovary</td>
<td>Cover</td>
<td>Cover</td>
</tr>
<tr>
<td>Brain</td>
<td>Cover</td>
<td>Cover</td>
</tr>
<tr>
<td>Cervix</td>
<td>Cover with exceptions *</td>
<td>Cover</td>
</tr>
<tr>
<td>Small cell lung</td>
<td>Cover</td>
<td>Cover</td>
</tr>
<tr>
<td>Soft tissue sarcoma</td>
<td>Cover</td>
<td>Cover</td>
</tr>
</tbody>
</table>

The policies contained in the FEP Medical Policy Manual are developed to assist in administering contractual benefits and do not constitute medical advice. They are not intended to replace or substitute for the independent medical judgment of a practitioner or other health care professional in the treatment of an individual member. The Blue Cross and Blue Shield Association does not intend by the FEP Medical Policy Manual, or by any particular medical policy, to recommend, advocate, encourage or discourage any particular medical technologies. Medical decisions relative to medical technologies are to be made strictly by members/patients in consultation with their health care providers. The conclusion that a particular service or supply is medically necessary does not constitute a representation or warranty that the Blue Cross and Blue Shield Service Benefit Plan covers (or pays for) this service or supply for a particular member.
The policies contained in the FEP Medical Policy Manual are developed to assist in administering contractual benefits and do not constitute medical advice. They are not intended to replace or substitute for the independent medical judgment of a practitioner or other health care professional in the treatment of an individual member. The Blue Cross and Blue Shield Association does not intend by the FEP Medical Policy Manual, or by any particular medical policy, to recommend, advocate, encourage or discourage any particular medical technologies. Medical decisions relative to medical technologies are to be made strictly by members/patients in consultation with their health care providers. The conclusion that a particular service or supply is medically necessary does not constitute a representation or warranty that the Blue Cross and Blue Shield Service Benefit Plan covers (or pays for) this service or supply for a particular member.

REFERENCES

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 2012</td>
<td>New policy</td>
<td>Policy updated with literature review. References 22-35 added. Policy statements revised with NMN added to breast cancer, colorectal cancer, soft tissue sarcomas and thyroid cancer. Thyroid cancer revised to include both differentiated and poorly differentiated disease. Prostate cancer moved to section on Other Oncologic Applications, also added to this section, are diagnosis of brain tumors, restaging of gastric cancer, staging of multiple myeloma, evaluation of neuroendocrine tumors and staging of inguinal lymph nodes in patients with squamous cell carcinoma of the penis.</td>
</tr>
<tr>
<td>June 2013</td>
<td>Replace policy</td>
<td></td>
</tr>
<tr>
<td>June 2014</td>
<td>Replace policy</td>
<td>Policy was revised with literature search adding references 37-40, 42-75. PET for gastric cancer as medically necessary for initial work up and staging and for evaluation of recurrent gastric cancer when other imaging modalities are inconclusive.</td>
</tr>
<tr>
<td>June 2015</td>
<td>Replace policy</td>
<td>Policy revised with literature review; references 1, 42-43, 46, 48-50, 59, 62, 72, 77, 84, and 87 added. Policy statements unchanged.</td>
</tr>
<tr>
<td>September 2017</td>
<td>Replace policy</td>
<td>Policy revised with literature review through March 23, 2017; references 37,41, 48-50, 59-63, 67-70, 73, 76-80, 85, 94-96, 103, 109-110, 112, 115,119-120, and 126 added. Additional details added to policy statements. The following statements were changed to medically necessary: staging or restaging of brain cancer; evaluation of response to treatment in head and neck cancer; and testing with 11C-choline for evaluating response to primary treatment in prostate cancer. Two additional indications were added.</td>
</tr>
</tbody>
</table>

The policies contained in the FEP Medical Policy Manual are developed to assist in administering contractual benefits and do not constitute medical advice. They are not intended to replace or substitute for the independent medical judgment of a practitioner or other health care professional in the treatment of an individual member. The Blue Cross and Blue Shield Association does not intend by the FEP Medical Policy Manual, or by any particular medical policy, to recommend, advocate, encourage or discourage any particular medical technologies. Medical decisions relative to medical technologies are to be made strictly by members/patients in consultation with their health care providers. The conclusion that a particular service or supply is medically necessary does not constitute a representation or warranty that the Blue Cross and Blue Shield Service Benefit Plan covers (or pays for) this service or supply for a particular member.
<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>December 2018</td>
<td>Replace policy</td>
<td>Policy revised with literature review through July 9, 2018; several references were added. The following statements were added for the new indications: “PET scanning may be considered medically necessary in the staging or restaging of muscle invasive bladder cancer” and “PET scanning with 68Ga may be considered medically necessary as a technique for staging neuroendocrine tumors either during initial staging or for restaging at follow-up. In addition, the following statement was revised: the staging and restaging of multiple myeloma was changed from “investigational” to “may be considered medically necessary”. The following statement was also revised: staging and restaging of small cell lung cancer was changed from “investigational” to “medically necessary” if limited stage is suspected. 18F-Ruciclovine was added as “medically necessary” for the staging and restaging of prostate cancer.</td>
</tr>
<tr>
<td>December 2019</td>
<td>Replace policy</td>
<td>Policy revised with literature review through August 9, 2019; references on NCCN updated. Policy statements unchanged.</td>
</tr>
</tbody>
</table>