

FEP Medical Policy Manual

FEP 2.04.135 Testing Serum Vitamin D Levels

Annual Effective Policy Date: April 1, 2024

Original Policy Date: December 2023

Related Policies:

None

Testing Serum Vitamin D Levels

Description

Description

Vitamin D, also known as calciferol, is a fat-soluble vitamin that has a variety of physiologic effects, most prominently in calcium homeostasis and bone metabolism. In addition to the role it plays in bone metabolism, other physiologic effects include inhibition of smooth muscle proliferation, regulation of the renin-angiotensin system, a decrease in coagulation, and a decrease in inflammatory markers.

OBJECTIVE

The objective of this evidence review is to examine whether testing for vitamin D deficiency improves net health outcomes in asymptomatic individuals.

POLICY STATEMENT

Testing vitamin D levels in individuals with signs and/or symptoms of vitamin D deficiency or toxicity (see Policy Guidelines section) may be considered **medically necessary.**

Testing vitamin D levels in asymptomatic individuals may be considered medically necessary in the following populations:

- Individuals who have risk factors for vitamin D deficiency (see Policy Guidelines section)
- Institutionalized individuals (see Policy Guidelines section).

Testing vitamin D levels in asymptomatic individuals is considered investigational when the above criteria are not met.

POLICY GUIDELINES

Signs and symptoms of vitamin D deficiency are largely manifested by changes in bone health and biochemical markers associated with bone production and resorption. In most cases, a clinical diagnosis of an abnormality in bone health (eg, rickets, osteomalacia, osteoporosis) will lead to a decision to test vitamin D levels. Symptoms related to the clinical condition may be present (eg, pain, low-impact fractures), but these symptoms are usually not indications for testing prior to a specific diagnosis. Some biochemical markers of bone health may indicate an increased risk for vitamin D deficiency, and testing of vitamin D levels may, therefore, be appropriate. These biochemical markers include unexplained abnormalities in serum calcium, phosphorus, alkaline phosphatase, and/or parathyroid hormone.

Signs and symptoms of vitamin D toxicity (hypervitaminosis D) generally result from induced hypercalcemia. Acute intoxication can cause symptoms of confusion, anorexia, vomiting, weakness, polydipsia, and polyuria. Chronic intoxication can cause bone demineralization, kidney stones, and bone pain.

"Institutionalized" as used herein refers to individuals who reside at long-term facilities where some degree of medical care is provided. These circumstances and facilities can include long-term hospital stays, nursing homes, assisted living facilities, and similar environments.

There are no standardized lists of factors denoting high risk for vitamin D deficiency, and published lists of high-risk factors differ considerably. Certain factors tend to be present on most lists, however, and they may constitute a core set of factors for which there is general agreement that testing is indicated. The Endocrine Society guidelines form the basis for the following list of high-risk factors for vitamin D deficiency. (see also Appendix 1)

- Chronic kidney disease stage ≥3
- Cirrhosis and chronic liver disease
- · Malabsorption states
- Osteomalacia
- Osteoporosis
- Rickets
- Hypo- or hypercalcemia
- Granulomatous diseases
- · Vitamin D deficiency, on replacement
- · Obstructive jaundice and biliary tract disease
- Osteogenesis imperfecta
- Osteosclerosis and osteopetrosis
- · Chronic use of anticonvulsant medications or corticosteroids
- · Parathyroid disorders

Osteopenia

The need for repeat testing may vary by condition. A single test may be indicated for diagnostic purposes; a repeat test may be appropriate to determine whether supplementation has been successful in restoring normal serum levels. More than 1 repeat test may occasionally be indicated, such as in cases where supplementation has not been successful in restoring levels (another example might include an instance in which continued or recurrent signs and symptoms may indicate ongoing deficiency, and/or when inadequate absorption or noncompliance with replacement therapy is suspected).

BENEFIT APPLICATION

Experimental or investigational procedures, treatments, drugs, or devices are not covered (See General Exclusion Section of brochure).

FDA REGULATORY STATUS

The U.S. Food and Drug Administration (FDA) has cleared a number of immunoassays for in vitro diagnostic devices for the quantitative measurement of total 25-hydroxyvitamin D through the 510(k) process.

Clinical laboratories may develop and validate tests in-house and market them as a laboratory service; laboratory-developed tests must meet the general regulatory standards of the Clinical Laboratory Improvement Amendments (CLIA). Lab tests for vitamin D are available under the auspices of CLIA. Laboratories that offer laboratory-developed tests must be licensed by CLIA for high-complexity testing. To date, the FDA has chosen not to require any regulatory review of this test.

RATIONALE

Summary of Evidence

For individuals who are asymptomatic without conditions or risk factors for which vitamin D treatment is recommended who receive testing of vitamin D levels, the evidence includes no randomized controlled trials (RCTs) of clinical utility (ie, evidence that patient care including testing vitamin D levels versus care without testing vitamin D levels improves outcomes). Relevant outcomes are overall survival, test validity, symptoms, morbid events, and treatment-related morbidity. Indirect evidence of the potential utility of testing includes many RCTs and systematic reviews of vitamin D supplementation. There is a lack of standardized vitamin D testing strategies and cutoffs for vitamin D deficiency are not standardized or evidencebased. In addition, despite the large quantity of evidence, considerable uncertainty remains about the beneficial health effects of vitamin D supplementation. Many RCTs have included participants who were not vitamin D deficient at baseline and did not stratify results by baseline 25hydroxyvitamin D level. Nonwhite race/ethnic groups are underrepresented in RCTs, but have an increased risk of vitamin D deficiency. For skeletal health, there may be a small effect of vitamin D supplementation on falls, but there does not appear to be an impact on reducing fractures for the general population. The effect on fracture reduction may be significant in elderly women and with higher doses of vitamin D. However, high doses of vitamin D may be associated with safety concerns in patients at risk for falls. For patients with asthma, there may be a reduction in severe exacerbations with vitamin D supplementation, but there does not appear to be an effect on other asthma outcomes. For patients who are pregnant, vitamin D supplementation may improve maternal and fetal outcomes. For overall mortality, there is also no benefit to the general population. RCTs evaluating extraskeletal, cancer, cardiovascular, and multiple sclerosis outcomes have not reported a statistically significant benefit for vitamin D supplementation. Although vitamin D toxicity and adverse events appear to be rare, few data on risks have been reported. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

SUPPLEMENTAL INFORMATION

Practice Guidelines and Position Statements

Guidelines or position statements will be considered for inclusion in 'Supplemental Information" if they were issued by, or jointly by, a US professional society, an international society with US representation, or National Institute for Health and Care Excellence (NICE). Priority will be given to guidelines that are informed by a systematic review, include strength of evidence ratings, and include a description of management of conflict of interest.

Bone Health and Osteoporosis Foundation

The Bone Health and Osteoporosis Foundation updated recommendations for the prevention and treatment of osteoporosis in 2021.^{3,} They recommended monitoring serum 25-hydroxy vitamin D levels in postmenopausal women and men 50 years of age and older, and vitamin D supplementation as necessary to maintain levels between 30 and 50 ng/mL.

Endocrine Society

In 2011, the Endocrine Society published clinical practice guidelines on the evaluation, treatment, and prevention of vitamin D deficiency.^{113,} The following recommendations were made regarding testing vitamin D levels:

- 25-hydroxy vitamin D serum level testing is recommended: "to evaluate vitamin D status only in patients who are at risk of deficiency." The guideline did not recommend screening of individuals not at risk of vitamin D deficiency.
- 1,25-dihydroxyvitamin D testing was not recommended to evaluate vitamin D status. However, the guideline did recommend monitoring calcitriol levels under certain conditions.

American College of Obstetrics and Gynecology

The American College of Obstetrics and Gynecology (2011, reaffirmed 2021) issued a committee opinion on the testing of vitamin D levels and vitamin D supplementation in pregnant women.^{114,} The following recommendation was made concerning testing vitamin D levels:

"At this time there is insufficient evidence to support a recommendation for screening all pregnant women for vitamin D deficiency. For pregnant women thought to be at increased risk of vitamin D deficiency, maternal serum 25-hydroxyvitamin D levels can be considered and should be interpreted in the context of the individual clinical circumstance. When vitamin D deficiency is identified during pregnancy, most experts agree that 1,000-2,000 international units per day of vitamin D is safe."

American Academy of Family Physicians

The American Academy of Family Physicians supports the U.S. Preventative Task Force recommendation on vitamin D screening.^{115,}

In 2018, key recommendations for practice concluded that there was insufficient information to recommend screening the general population for vitamin D deficiency and that treating asymptomatic individuals with identified deficiency has not been shown to improve health.^{116,}

National Osteoporosis Society

The National Osteoporosis Society issued a patient management clinical guideline for vitamin D and bone health in 2014. ^{117,} It recommended that serum 25-hydroxyvitamin D levels should be measured to estimate vitamin D status in certain clinical scenarios such as: bone diseases that may improve with vitamin D treatment; bone diseases, prior to specific treatment where correcting vitamin D deficiency is appropriate; and musculoskeletal symptoms that could be due to vitamin D deficiency.

U.S. Preventive Services Task Force Recommendations

The **U.S. Preventive Services Task Force** published an updated recommendation^{118,} and associated evidence report and systematic review in 2021 ^{119,} on vitamin D screening. The **Task Force** concluded that the current evidence was insufficient to assess the balance of benefits and harms of screening for vitamin D deficiency in asymptomatic individuals (grade I [insufficient evidence]).

Medicare National Coverage

There is no national coverage determination. In the absence of a national coverage determination, coverage decisions are left to the discretion of local Medicare carriers.

REFERENCES

- 1. Shapses SA, Manson JE. Vitamin D and prevention of cardiovascular disease and diabetes: why the evidence falls short. JAMA. Jun 22 2011; 305(24): 2565-6. PMID 21693745
- 2. Committee to Review Dietary Reference Intakes for Vitamin D and Calcium, Food and Nutrition Board. Dietary Reference Intakes for Calcium and Vitamin D. Washington, DC: National Academies Press; 2011.
- 3. LeBoff MS, Greenspan SL, Insogna KL, et al. The clinician's guide to prevention and treatment of osteoporosis. Osteoporos Int. Oct 2022; 33(10): 2049-2102. PMID 35478046
- 4. Herrick KA, Storandt RJ, Afful J, et al. Vitamin D status in the United States, 2011-2014. Am J Clin Nutr. Jul 01 2019; 110(1): 150-157. PMID 31076739
- 5. Yetley EA. Assessing the vitamin D status of the US population. Am J Clin Nutr. Aug 2008; 88(2): 558S-564S. PMID 18689402
- 6. Cranney A, Horsley T, O'Donnell S, et al. Effectiveness and Safety of Vitamin D in Relation to Bone Health (Evidence Reports/Technology Assessments No. 158). Rockville, MD: Agency for Healthcare Research and Quality; 2011.
- 7. Jackson RD, LaCroix AZ, Gass M, et al. Calcium plus vitamin D supplementation and the risk of fractures. N Engl J Med. Feb 16 2006; 354(7): 669-83. PMID 16481635
- 8. Holvik K, Ahmed LA, Forsmo S, et al. Low serum levels of 25-hydroxyvitamin D predict hip fracture in the elderly: a NOREPOS study. J Clin Endocrinol Metab. Aug 2013; 98(8): 3341-50. PMID 23678033
- 9. Cauley JA, Lacroix AZ, Wu L, et al. Serum 25-hydroxyvitamin D concentrations and risk for hip fractures. Ann Intern Med. Aug 19 2008; 149(4): 242-50. PMID 18711154
- Mithal A, Wahl DA, Bonjour JP, et al. Global vitamin D status and determinants of hypovitaminosis D. Osteoporos Int. Nov 2009; 20(11): 1807-20. PMID 19543765
- 11. Cauley JA, Parimi N, Ensrud KE, et al. Serum 25-hydroxyvitamin D and the risk of hip and nonspine fractures in older men. J Bone Miner Res. Mar 2010; 25(3): 545-53. PMID 19775201
- 12. Looker AC, Mussolino ME. Serum 25-hydroxyvitamin D and hip fracture risk in older U.S. white adults. J Bone Miner Res. Jan 2008; 23(1): 143-50. PMID 17907920
- Jia X, Aucott LS, McNeill G. Nutritional status and subsequent all-cause mortality in men and women aged 75 years or over living in the community. Br J Nutr. Sep 2007; 98(3): 593-9. PMID 17442130
- 14. Visser M, Deeg DJ, Puts MT, et al. Low serum concentrations of 25-hydroxyvitamin D in older persons and the risk of nursing home admission. Am J Clin Nutr. Sep 2006; 84(3): 616-22; quiz 671-2. PMID 16960177
- 15. Theodoratou E, Tzoulaki I, Zgaga L, et al. Vitamin D and multiple health outcomes: umbrella review of systematic reviews and meta-analyses of observational studies and randomised trials. BMJ. Apr 01 2014; 348: g2035. PMID 24690624
- 16. DEQAS (Vitamin D External Quality Assurance Scheme). n.d.; http://www.deqas.org/. Accessed October 26, 2022.
- 17. LeBlanc ES, Zakher B, Daeges M, et al. Screening for vitamin D deficiency: a systematic review for the U.S. Preventive Services Task Force. Ann Intern Med. Jan 20 2015; 162(2): 109-22. PMID 25419719
- 18. Ling Y, Xu F, Xia X, et al. Vitamin D supplementation reduces the risk of fall in the vitamin D deficient elderly: An updated meta-analysis. Clin Nutr. 2021;40(11):5531-5537. doi:10.1016/j.clnu.2021.09.031
- 19. Avenell A, Gillespie WJ, Gillespie LD, et al. Vitamin D and vitamin D analogues for preventing fractures associated with involutional and postmenopausal osteoporosis. Cochrane Database Syst Rev. Apr 15 2009; (2): CD000227. PMID 19370554
- 20. Bischoff-Ferrari HA, Willett WC, Wong JB, et al. Prevention of nonvertebral fractures with oral vitamin D and dose dependency: a meta-analysis of randomized controlled trials. Arch Intern Med. Mar 23 2009; 169(6): 551-61. PMID 19307517
- 21. Palmer SC, McGregor DO, Craig JC, et al. Vitamin D compounds for people with chronic kidney disease requiring dialysis. Cochrane Database Syst Rev. Oct 07 2009; (4): CD005633. PMID 19821349
- 22. Bischoff-Ferrari HA, Willett WC, Wong JB, et al. Fracture prevention with vitamin D supplementation: a meta-analysis of randomized controlled trials. JAMA. May 11 2005; 293(18): 2257-64. PMID 15886381
- 23. Appel LJ, Michos ED, Mitchell CM, et al. The Effects of Four Doses of Vitamin D Supplements on Falls in Older Adults : A Response-Adaptive, Randomized Clinical Trial. Ann Intern Med. Feb 2021; 174(2): 145-156. PMID 33284677

- 24. Sanders KM, Stuart AL, Williamson EJ, et al. Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. JAMA. May 12 2010; 303(18): 1815-22. PMID 20460620
- 25. Elamin MB, Abu Elnour NO, Elamin KB, et al. Vitamin D and cardiovascular outcomes: a systematic review and meta-analysis. J Clin Endocrinol Metab. Jul 2011; 96(7): 1931-42. PMID 21677037
- 26. Pittas AG, Chung M, Trikalinos T, et al. Systematic review: Vitamin D and cardiometabolic outcomes. Ann Intern Med. Mar 02 2010; 152(5): 307-14. PMID 20194237
- 27. Chung M, Balk EM, Brendel M, et al. Vitamin D and calcium: a systematic review of health outcomes. Evid Rep Technol Assess (Full Rep). Aug 2009; (183): 1-420. PMID 20629479
- 28. Wang TJ, Pencina MJ, Booth SL, et al. Vitamin D deficiency and risk of cardiovascular disease. Circulation. Jan 29 2008; 117(4): 503-11. PMID 18180395
- 29. Su C, Jin B, Xia H, et al. Association between Vitamin D and Risk of Stroke: A PRISMA-Compliant Systematic Review and Meta-Analysis. Eur Neurol. 2021; 84(6): 399-408. PMID 34325429
- 30. Fu J, Sun J, Zhang C. Vitamin D supplementation and risk of stroke: A meta-analysis of randomized controlled trials. Front Neurol. 2022; 13: 970111. PMID 36062009
- 31. Bolland MJ, Avenell A, Baron JA, et al. Effect of calcium supplements on risk of myocardial infarction and cardiovascular events: meta-analysis. BMJ. Jul 29 2010; 341: c3691. PMID 20671013
- 32. Keum N, Lee DH, Greenwood DC, et al. Vitamin D supplementation and total cancer incidence and mortality: a meta-analysis of randomized controlled trials. Ann Oncol. May 01 2019; 30(5): 733-743. PMID 30796437
- 33. Bjelakovic G, Gluud LL, Nikolova D, et al. Vitamin D supplementation for prevention of cancer in adults. Cochrane Database Syst Rev. Jun 23 2014; (6): CD007469. PMID 24953955
- 34. Ott SM, Chesnut CH. Calcitriol treatment is not effective in postmenopausal osteoporosis. Ann Intern Med. Feb 15 1989; 110(4): 267-74. PMID 2913914
- 35. Grady D, Halloran B, Cummings S, et al. 1,25-Dihydroxyvitamin D3 and muscle strength in the elderly: a randomized controlled trial. J Clin Endocrinol Metab. Nov 1991; 73(5): 1111-7. PMID 1939527
- 36. Komulainen M, Kroger H, Tuppurainen MT, et al. Prevention of femoral and lumbar bone loss with hormone replacement therapy and vitamin D3 in early postmenopausal women: a population-based 5-year randomized trial. J Clin Endocrinol Metab. Feb 1999; 84(2): 546-52. PMID 10022414
- 37. Gallagher JC, Fowler SE, Detter JR, et al. Combination treatment with estrogen and calcitriol in the prevention of age-related bone loss. J Clin Endocrinol Metab. Aug 2001; 86(8): 3618-28. PMID 11502787
- 38. Trivedi DP, Doll R, Khaw KT. Effect of four monthly oral vitamin D3 (cholecalciferol) supplementation on fractures and mortality in men and women living in the community: randomised double blind controlled trial. BMJ. Mar 01 2003; 326(7387): 469. PMID 12609940
- 39. Wactawski-Wende J, Kotchen JM, Anderson GL, et al. Calcium plus vitamin D supplementation and the risk of colorectal cancer. N Engl J Med. Feb 16 2006; 354(7): 684-96. PMID 16481636
- 40. Daly RM, Petrass N, Bass S, et al. The skeletal benefits of calcium- and vitamin D3-fortified milk are sustained in older men after withdrawal of supplementation: an 18-mo follow-up study. Am J Clin Nutr. Mar 2008; 87(3): 771-7. PMID 18326617
- 41. LaCroix AZ, Kotchen J, Anderson G, et al. Calcium plus vitamin D supplementation and mortality in postmenopausal women: the Women's Health Initiative calcium-vitamin D randomized controlled trial. J Gerontol A Biol Sci Med Sci. May 2009; 64(5): 559-67. PMID 19221190
- 42. Bolton-Smith C, McMurdo ME, Paterson CR, et al. Two-year randomized controlled trial of vitamin K1 (phylloquinone) and vitamin D3 plus calcium on the bone health of older women. J Bone Miner Res. Apr 2007; 22(4): 509-19. PMID 17243866
- 43. Lappe JM, Travers-Gustafson D, Davies KM, et al. Vitamin D and calcium supplementation reduces cancer risk: results of a randomized trial. Am J Clin Nutr. Jun 2007; 85(6): 1586-91. PMID 17556697
- 44. Prince RL, Austin N, Devine A, et al. Effects of ergocalciferol added to calcium on the risk of falls in elderly high-risk women. Arch Intern Med. Jan 14 2008; 168(1): 103-8. PMID 18195202
- 45. Janssen HC, Samson MM, Verhaar HJ. Muscle strength and mobility in vitamin D-insufficient female geriatric patients: a randomized controlled trial on vitamin D and calcium supplementation. Aging Clin Exp Res. Feb 2010; 22(1): 78-84. PMID 20305368
- 46. Brunner RL, Wactawski-Wende J, Caan BJ, et al. The effect of calcium plus vitamin D on risk for invasive cancer: results of the Women's Health Initiative (WHI) calcium plus vitamin D randomized clinical trial. Nutr Cancer. 2011; 63(6): 827-41. PMID 21774589
- 47. Avenell A, MacLennan GS, Jenkinson DJ, et al. Long-term follow-up for mortality and cancer in a randomized placebo-controlled trial of vitamin D(3) and/or calcium (RECORD trial). J Clin Endocrinol Metab. Feb 2012; 97(2): 614-22. PMID 22112804
- 48. Glendenning P, Zhu K, Inderjeeth C, et al. Effects of three-monthly oral 150,000 IU cholecalciferol supplementation on falls, mobility, and muscle strength in older postmenopausal women: a randomized controlled trial. J Bone Miner Res. Jan 2012; 27(1): 170-6. PMID 21956713
- 49. Larsen T, Mose FH, Bech JN, et al. Effect of cholecalciferol supplementation during winter months in patients with hypertension: a randomized, placebo-controlled trial. Am J Hypertens. Nov 2012; 25(11): 1215-22. PMID 22854639
- 50. Murdoch DR, Slow S, Chambers ST, et al. Effect of vitamin D3 supplementation on upper respiratory tract infections in healthy adults: the VIDARIS randomized controlled trial. JAMA. Oct 03 2012; 308(13): 1333-9. PMID 23032549
- 51. Wood AD, Secombes KR, Thies F, et al. Vitamin D3 supplementation has no effect on conventional cardiovascular risk factors: a parallel-group, double-blind, placebo-controlled RCT. J Clin Endocrinol Metab. Oct 2012; 97(10): 3557-68. PMID 22865902
- 52. Witham MD, Price RJ, Struthers AD, et al. Cholecalciferol treatment to reduce blood pressure in older patients with isolated systolic hypertension: the VitDISH randomized controlled trial. JAMA Intern Med. Oct 14 2013; 173(18): 1672-9. PMID 23939263
- 53. Baron JA, Barry EL, Mott LA, et al. A Trial of Calcium and Vitamin D for the Prevention of Colorectal Adenomas. N Engl J Med. Oct 15 2015; 373(16): 1519-30. PMID 26465985

- 54. Jorde R, Sollid ST, Svartberg J, et al. Vitamin D 20,000 IU per Week for Five Years Does Not Prevent Progression From Prediabetes to Diabetes. J Clin Endocrinol Metab. Apr 2016; 101(4): 1647-55. PMID 26829443
- 55. Lappe J, Watson P, Travers-Gustafson D, et al. Effect of Vitamin D and Calcium Supplementation on Cancer Incidence in Older Women: A Randomized Clinical Trial. JAMA. Mar 28 2017; 317(12): 1234-1243. PMID 28350929
- 56. Scragg R, Khaw KT, Toop L, et al. Monthly High-Dose Vitamin D Supplementation and Cancer Risk: A Post Hoc Analysis of the Vitamin D Assessment Randomized Clinical Trial. JAMA Oncol. Nov 01 2018; 4(11): e182178. PMID 30027269
- 57. Manson JE, Cook NR, Lee IM, et al. Vitamin D Supplements and Prevention of Cancer and Cardiovascular Disease. N Engl J Med. Jan 03 2019; 380(1): 33-44. PMID 30415629
- 58. Liu M, Wang J, Sun X. A Meta-Analysis on Vitamin D Supplementation and Asthma Treatment. Front Nutr. 2022; 9: 860628. PMID 35873428
- 59. Jolliffe DA, Greenberg L, Hooper RL, et al. Vitamin D supplementation to prevent asthma exacerbations: a systematic review and meta-analysis of individual participant data. Lancet Respir Med. Nov 2017; 5(11): 881-890. PMID 28986128
- 60. Martineau AR, Cates CJ, Urashima M, et al. Vitamin D for the management of asthma. Cochrane Database Syst Rev. Sep 05 2016; 9: CD011511. PMID 27595415
- 61. Luo J, Liu D, Liu CT. Can Vitamin D Supplementation in Addition to Asthma Controllers Improve Clinical Outcomes in Patients With Asthma?: A Meta-Analysis. Medicine (Baltimore). Dec 2015; 94(50): e2185. PMID 26683927
- 62. Worth H, Stammen D, Keck E. Therapy of steroid-induced bone loss in adult asthmatics with calcium, vitamin D, and a diphosphonate. Am J Respir Crit Care Med. Aug 1994; 150(2): 394-7. PMID 8049820
- 63. Majak P, Rychlik B, Stelmach I. The effect of oral steroids with and without vitamin D3 on early efficacy of immunotherapy in asthmatic children. Clin Exp Allergy. Dec 2009; 39(12): 1830-41. PMID 19817753
- 64. Urashima M, Segawa T, Okazaki M, et al. Randomized trial of vitamin D supplementation to prevent seasonal influenza A in schoolchildren. Am J Clin Nutr. May 2010; 91(5): 1255-60. PMID 20219962
- 65. Majak P, Olszowiec-Chlebna M, Smejda K, et al. Vitamin D supplementation in children may prevent asthma exacerbation triggered by acute respiratory infection. J Allergy Clin Immunol. May 2011; 127(5): 1294-6. PMID 21315433
- 66. Lewis E, Fernandez C, Nella A, et al. Relationship of 25-hydroxyvitamin D and asthma control in children. Ann Allergy Asthma Immunol. Apr 2012; 108(4): 281-2. PMID 22469451
- 67. Baris S, Kiykim A, Ozen A, et al. Vitamin D as an adjunct to subcutaneous allergen immunotherapy in asthmatic children sensitized to house dust mite. Allergy. Feb 2014; 69(2): 246-53. PMID 24180595
- 68. Castro M, King TS, Kunselman SJ, et al. Effect of vitamin D3 on asthma treatment failures in adults with symptomatic asthma and lower vitamin D levels: the VIDA randomized clinical trial. JAMA. May 2014; 311(20): 2083-91. PMID 24838406
- 69. Yadav M, Mittal K. Effect of vitamin D supplementation on moderate to severe bronchial asthma. Indian J Pediatr. Jul 2014; 81(7): 650-4. PMID 24193954
- 70. de Groot JC, van Roon EN, Storm H, et al. Vitamin D reduces eosinophilic airway inflammation in nonatopic asthma. J Allergy Clin Immunol. Mar 2015; 135(3): 670-5.e3. PMID 25617224
- 71. Martineau AR, MacLaughlin BD, Hooper RL, et al. Double-blind randomised placebo-controlled trial of bolus-dose vitamin D3 supplementation in adults with asthma (ViDiAs). Thorax. May 2015; 70(5): 451-7. PMID 25724847
- 72. Tachimoto H, Mezawa H, Segawa T, et al. Improved control of childhood asthma with low-dose, short-term vitamin D supplementation: a randomized, double-blind, placebo-controlled trial. Allergy. Jul 2016; 71(7): 1001-9. PMID 26841365
- 73. Jensen ME, Mailhot G, Alos N, et al. Vitamin D intervention in preschoolers with viral-induced asthma (DIVA): a pilot randomised controlled trial. Trials. Jul 26 2016; 17(1): 353. PMID 27456232
- 74. Kerley CP, Hutchinson K, Cormican L, et al. Vitamin D3 for uncontrolled childhood asthma: A pilot study. Pediatr Allergy Immunol. Jun 2016; 27(4): 404-12. PMID 26845753
- 75. Musharraf MU, Sandhu GA, Mumtaz MU, Rashid MF. Role of vitamin D in prevention of acute exacerbation of bronchial asthma in adults. J Postgrad Med Inst. 2017;31:3103. doi: 10.1002/rmv.1909
- 76. Dodamani MH, Muthu V, Thakur R, et al. A randomised trial of vitamin D in acute-stage allergic bronchopulmonary aspergillosis complicating asthma. Mycoses. Apr 2019; 62(4): 320-327. PMID 30561849
- 77. Shabana MA, Esawy MM, Ismail NA, et al. Predictive role of IL-17A/IL-10 ratio in persistent asthmatic patients on vitamin D supplement. Immunobiology. Nov 2019; 224(6): 721-727. PMID 31570180
- 78. Jat KR, Goel N, Gupta N, et al. Efficacy of vitamin D supplementation in asthmatic children with vitamin D deficiency: A randomized controlled trial (ESDAC trial). Pediatr Allergy Immunol. Apr 2021; 32(3): 479-488. PMID 33207014
- 79. Thakur C, Kumar J, Kumar P, et al. Vitamin-D supplementation as an adjunct to standard treatment of asthma in children: A randomized controlled trial (ViDASTA Trial). Pediatr Pulmonol. Jun 2021; 56(6): 1427-1433. PMID 33522698
- 80. Litonjua AA, Carey VJ, Laranjo N, et al. Effect of Prenatal Supplementation With Vitamin D on Asthma or Recurrent Wheezing in Offspring by Age 3 Years: The VDAART Randomized Clinical Trial. JAMA. Jan 26 2016; 315(4): 362-70. PMID 26813209
- 81. Andujar-Espinosa R, Salinero-Gonzalez L, Illan-Gomez F, et al. Effect of vitamin D supplementation on asthma control in patients with vitamin D deficiency: the ACVID randomised clinical trial. Thorax. Feb 2021; 76(2): 126-133. PMID 33154023
- Palacios C, Kostiuk LK, Pena-Rosas JP. Vitamin D supplementation for women during pregnancy. Cochrane Database Syst Rev. Jul 26 2019;
 7: CD008873. PMID 31348529
- 83. Brooke OG, Brown IR, Bone CD, et al. Vitamin D supplements in pregnant Asian women: effects on calcium status and fetal growth. British Medical Journal 1980;1:751-754.
- 84. Delvin EE, Salle BL, Glorieux FH, et al. Vitamin D supplementation during pregnancy: effect on neonatal calcium homeostasis. J Pediatr. Aug 1986; 109(2): 328-34. PMID 3488384

The policies contained in the FEP Medical Policy Manual are developed to assist in administering contractual benefits and do not constitute medical advice. They are not intended to replace or substitute for the independent medical judgment of a practitioner or other health care professional in the treatment of an individual member. The Blue Cross and Blue Shield Association does not intend by the FEP Medical Policy Manual, or by any particular medical policy, to recommend, advocate, encourage or discourage any particular medical technologies. Medical decisions relative to medical technologies are to be made strictly by members/patients in consultation with their health care providers. The conclusion that a particular service or supply is medically necessary does not constitute a representation or warranty that the Blue Cross and Blue Shield Service Benefit Plan covers (or pays for) this service or supply for a particular member.

- 85. Mallet E, Gugi B, Brunelle P, et al. Vitamin D supplementation in pregnancy: a controlled trial of two methods. Obstet Gynecol. Sep 1986; 68(3): 300-4. PMID 3755517
- 86. Marya RK, Rathee S, Dua V, et al. Effect of vitamin D supplementation during pregnancy on foetal growth. Indian J Med Res. Dec 1988; 88: 488-92. PMID 3243609
- 87. Kaur J, Marya RK, Rathee S, Ial H, Singh GP. Effect of pharmacological doses of vitamin D during pregnancy on placental protein status and birth weight. Nutrition Research. 1991;11(9):1077-1081.
- 88. Yu C, Newton L, Robinson S, Teoh TG, Sethi M. Vitamin D deficiency and supplementation in pregnant women of four ethnic groups. Archives of Disease in Childhood. Fetal and Neonatal Edition. 2008;93(Suppl 1):Fa68.
- 89. Roth DE, Al Mahmud A, Raqib R, et al. Randomized placebo-controlled trial of high-dose prenatal third-trimester vitamin D3 supplementation in Bangladesh: the AViDD trial. Nutr J. Apr 12 2013; 12: 47. PMID 23587190
- 90. Sabet Z, Ghazi AA, Tohidi M, Oladi B. Vitamin D supplementation in pregnant Iranian women: Effects on maternal and neonatal vitamin D and parathyroid hormone status. Acta Endocrinologica. 2012;8(1):59-66.
- 91. Asemi Z, Samimi M, Tabassi Z, et al. Vitamin D supplementation affects serum high-sensitivity C-reactive protein, insulin resistance, and biomarkers of oxidative stress in pregnant women. J Nutr. Sep 2013; 143(9): 1432-8. PMID 23884390
- 92. Grant CC, Stewart AW, Scragg R, et al. Vitamin D during pregnancy and infancy and infant serum 25-hydroxyvitamin D concentration. Pediatrics. Jan 2014; 133(1): e143-53. PMID 24344104
- 93. Tehrani HG, Mostajeran F, Banihashemi B. Effect of Vitamin D Supplementation on the Incidence of Gestational Diabetes. Adv Biomed Res. 2017; 6: 79. PMID 28808645
- 94. Mirghafourvand M, Mohammad-Alizadeh-Charandabi S, Mansouri A, Najafi M, Khodabande F. The effect of vitamin D and calcium plus vitamin D on sleep quality in pregnant women with leg cramps: A controlled randomized clinical trial. Journal of Isfahan Medical School. 2015;32(320):2444-2453.
- 95. Rodda CP, Benson JE, Vincent AJ, et al. Maternal vitamin D supplementation during pregnancy prevents vitamin D deficiency in the newborn: an open-label randomized controlled trial. Clin Endocrinol (Oxf). Sep 2015; 83(3): 363-8. PMID 25727810
- 96. Sablok A, Batra A, Thariani K, et al. Supplementation of vitamin D in pregnancy and its correlation with feto-maternal outcome. Clin Endocrinol (Oxf). Oct 2015; 83(4): 536-41. PMID 25683660
- 97. Singh J, Hariharan C, Bhaumik D. Role of vitamin D in reducing the risk of preterm labour. International Journal of Reproduction, Contraception, Obstetrics and Gynecology. 2015;1:86-93.
- 98. Khan F. A randomized controlled trial of oral vitamin D supplementation in pregnancy to improve maternal periodontal health and birth weight. Journal of International Oral Health 2016;8(6):657-65.
- 99. Cooper C, Harvey NC, Bishop NJ, et al. Maternal gestational vitamin D supplementation and offspring bone health (MAVIDOS): a multicentre, double-blind, randomised placebo-controlled trial. Lancet Diabetes Endocrinol. May 2016; 4(5): 393-402. PMID 26944421
- 100. Naghshineh E, Sheikhaliyan S. Effect of vitamin D supplementation in the reduce risk of preeclampsia in nulliparous women. Adv Biomed Res. 2016; 5: 7. PMID 26962509
- 101. Shahgheibi S, Farhadifar F, Pouya B. The effect of vitamin D supplementation on gestational diabetes in high-risk women: Results from a randomized placebo-controlled trial. J Res Med Sci. 2016; 21: 2. PMID 27904548
- 102. Vaziri F, Dabbaghmanesh MH, Samsami A, et al. Vitamin D supplementation during pregnancy on infant anthropometric measurements and bone mass of mother-infant pairs: A randomized placebo clinical trial. Early Hum Dev. Dec 2016; 103: 61-68. PMID 27513714
- 103. Behjat Sasan S, Zandvakili F, Soufizadeh N, et al. The Effects of Vitamin D Supplement on Prevention of Recurrence of Preeclampsia in Pregnant Women with a History of Preeclampsia. Obstet Gynecol Int. 2017; 2017: 8249264. PMID 28912817
- 104. Samimi M, Kashi M, Foroozanfard F, et al. The effects of vitamin D plus calcium supplementation on metabolic profiles, biomarkers of inflammation, oxidative stress and pregnancy outcomes in pregnant women at risk for pre-eclampsia. J Hum Nutr Diet. Aug 2016; 29(4): 505-15. PMID 26467311
- 105. Pozuelo-Moyano B, Benito-Leon J, Mitchell AJ, et al. A systematic review of randomized, double-blind, placebo-controlled trials examining the clinical efficacy of vitamin D in multiple sclerosis. Neuroepidemiology. 2013; 40(3): 147-53. PMID 23257784
- 106. James E, Dobson R, Kuhle J, et al. The effect of vitamin D-related interventions on multiple sclerosis relapses: a meta-analysis. Mult Scler. Oct 2013; 19(12): 1571-9. PMID 23698130
- 107. Jagannath VA, Fedorowicz Z, Asokan GV, et al. Vitamin D for the management of multiple sclerosis. Cochrane Database Syst Rev. Dec 08 2010; (12): CD008422. PMID 21154396
- 108. LeBlanc ES, Chou R, Pappas M. Screening for vitamin D deficiency. Ann Intern Med. May 19 2015; 162(10): 738. PMID 25984861
- 109. Newberry SJ, Chung M, Shekelle PG, et al. Vitamin D and Calcium: A Systematic Review of Health Outcomes (Update). Evidence Report/Technology Assessment No. 217. Rockville, MD: Agency for Healthcare Research and Quality; 2014.
- 110. Chowdhury R, Kunutsor S, Vitezova A, et al. Vitamin D and risk of cause specific death: systematic review and meta-analysis of observational cohort and randomised intervention studies. BMJ. Apr 01 2014; 348: g1903. PMID 24690623
- 111. Bjelakovic G, Gluud LL, Nikolova D, et al. Vitamin D supplementation for prevention of mortality in adults. Cochrane Database Syst Rev. Jan 10 2014; (1): CD007470. PMID 24414552
- 112. Palmer SC, McGregor DO, Craig JC, et al. Vitamin D compounds for people with chronic kidney disease not requiring dialysis. Cochrane Database Syst Rev. Oct 07 2009; (4): CD008175. PMID 19821446
- 113. Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. Jul 2011; 96(7): 1911-30. PMID 21646368
- 114. ACOG Committee Opinion No. 495: Vitamin D: Screening and supplementation during pregnancy. Obstet Gynecol. Jul 2011; 118(1): 197-198. PMID 21691184

- 115. American Academy of Family Physicians. Vitamin D Screening and Supplementation in Community-Dwelling Adults: Common Questions and Answers. 2018; https://www.aafp.org/afp/2018/0215/p254.html. Accessed October 25, 2022.
- 116. LeFevre ML, LeFevre NM. Vitamin D Screening and Supplementation in Community-Dwelling Adults: Common Questions and Answers. Am Fam Physician. Feb 15 2018; 97(4): 254-260. PMID 29671532
- 117. Aspray TJ, Bowring C, Fraser W, et al. National Osteoporosis Society vitamin D guideline summary. Age Ageing. Sep 2014; 43(5): 592-5. PMID 25074538
- 118. Krist AH, Davidson KW, Mangione CM, et al. Screening for Vitamin D Deficiency in Adults: US Preventive Services Task Force Recommendation Statement. JAMA. Apr 13 2021; 325(14): 1436-1442. PMID 33847711
- 119. Kahwati LC, LeBlanc E, Weber RP, et al. Screening for Vitamin D Deficiency in Adults: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA. Apr 13 2021; 325(14): 1443-1463. PMID 33847712
- 120. Noridian Healthcare Solutions. Local Coverage Determination (LCD): Vitamin D Assay Testing (L36692). 2017; https://med.noridianmedicare.com/documents/10546/6990981/Vitamin+D+Assay+Testing+LCD. Accessed October 26, 2022.

POLICY HISTORY - THIS POLICY WAS APPROVED BY THE FEP® PHARMACY AND MEDICAL POLICY COMMITTEE ACCORDING TO THE HISTORY BELOW:

Date	Action	Description
December 2023	New policy	Policy updated with literature review through October 24, 2022; references added. Not Medically Necessary language changed to Investigational and other minor editorial refinements to policy statements; intent unchanged. FEP new policy.

The policies contained in the FEP Medical Policy Manual are developed to assist in administering contractual benefits and do not constitute medical advice. They are not intended to replace or substitute for the independent medical judgment of a practitioner or other health care professional in the treatment of an individual member. The Blue Cross and Blue Shield Association does not intend by the FEP Medical Policy Manual, or by any particular medical policy, to recommend, advocate, encourage or discourage any particular medical technologies. Medical decisions relative to medical technologies are to be made strictly by members/patients in consultation with their health care providers. The conclusion that a particular service or supply is medically necessary does not constitute a representation or warranty that the Blue Cross and Blue Shield Service Benefit Plan covers (or pays for) this service or supply for a particular member.