

FEP Medical Policy Manual

FEP 7.01.75 Cryosurgical Ablation of Primary or Metastatic Liver Tumors

Annual Effective Policy Date: January 1, 2024

Original Policy Date: December 2011

Related Policies:

- 7.01.13 Surgical Treatment of Bilateral Gynecomastia
- 7.01.91 Radiofrequency Ablation of Primary or Metastatic Liver Tumors
- 7.01.92 Cryoablation of Tumors Located in the Kidney, Lung, Breast, Pancreas, or Bone
- 7.01.95 Radiofrequency Ablation of Miscellaneous Solid Tumors Excluding Liver Tumors
- 8.01.11 Transcatheter Arterial Chemoembolization to Treat Primary or Metastatic Liver Malignancies
- 8.01.43 Radioembolization for Primary and Metastatic Tumors of the Liver

Cryosurgical Ablation of Primary or Metastatic Liver Tumors

Description

Description

Cryosurgical ablation (CSA) involves the freezing of target tissues, often by inserting a probe through which coolant is circulated into the tumor. CSA can be performed as an open surgical technique or percutaneously or laparoscopically, typically with ultrasound guidance.

OBJECTIVE

The objective of this evidence review is to determine whether cryoablation improves the net health outcome in individuals with unresectable primary and metastatic liver tumors.

POLICY STATEMENT

Cryosurgical ablation of either primary or metastatic tumors in the liver is investigational.

POLICY GUIDELINES

None

BENEFIT APPLICATION

Experimental or investigational procedures, treatments, drugs, or devices are not covered (See General Exclusion Section of brochure).

FDA REGULATORY STATUS

Several cryosurgical devices have been cleared for marketing by the U.S. Food and Drug Administration (FDA) through the 510(k) process. Use includes general surgery, urology, gynecology, oncology, neurology, dermatology, ENT[ears, nose, throat], proctology, pulmonary surgery, and thoracic surgery. The system is designed to freeze/ablate tissue by the application of extreme cold temperatures.

FDA product code: GEH.

RATIONALE

Summary of Evidence

For individuals who have unresectable primary hepatocellular carcinoma (HCC) amenable to locoregional therapy who receive cryosurgical ablation (CSA), the evidence includes two meta-analyses, one randomized controlled trial (RCT), several nonrandomized comparative studies, and multiple noncomparative studies. Relevant outcomes are overall survival (OS), disease-specific survival, and treatment-related mortality and morbidity. The available RCT comparing cryoablation with radiofrequency ablation (RFA) demonstrated lower rates of local tumor progression with cryoablation but no differences in survival outcomes between groups. Although this trial provided suggestive evidence that cryoablation is comparable with RFA, trial limitations would suggest findings need to be replicated. Nonrandomized comparative studies have failed to find consistent benefit with cryoablation in outcomes related to tumor recurrence and survival. Evidence from two meta-analyses suggests equivalent OS and progression-free survival to RFA and superiority for combined transarterial chemoembolization (TACE) plus CSA over TACE alone for OS and tumor progression. Additional randomized comparative evidence is needed to permit conclusions about the effectiveness of cryoablation compared with other locoregional therapies. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have unresectable liver metastases from neuroendocrine tumors amenable to locoregional therapy who receive CSA, the evidence includes a Cochrane review and case series. Relevant outcomes are OS, disease-specific survival, symptoms, and treatment-related mortality and morbidity. The available evidence base is very limited. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have unresectable liver metastases from colorectal cancer amenable to locoregional therapy who have CSA, the evidence includes an RCT, several nonrandomized comparative and noncomparative studies, and systematic reviews of these studies. Relevant outcomes are OS, disease-specific survival, and treatment-related mortality and morbidity. The available RCT comparing surgical resection with cryoablation was judged as high risk of bias. Some nonrandomized comparative studies have reported improved survival outcomes for patients managed with cryotherapy compared with those managed with resection alone; however, these studies were subject to bias in the selection of patients for treatments. Additional controlled studies are needed to permit conclusions about the effectiveness of cryoablation compared with other locoregional therapies. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

SUPPLEMENTAL INFORMATION

Practice Guidelines and Position Statements

Guidelines or position statements will be considered for inclusion in 'Supplemental Information' if they were issued by, or jointly by, a US professional society, an international society with US representation, or National Institute for Health and Care Excellence (NICE). Priority will be given to guidelines that are informed by a systematic review, include strength of evidence ratings, and include a description of management of conflict of interest.

National Comprehensive Cancer Network

The National Comprehensive Cancer Network (NCCN) indicates that ablative techniques may be used in the treatment of certain hepatic tumors. The NCCN guidelines on hepatocellular carcinoma(v. 1.202 3) include cryoablation in a list of ablative techniques, along with radiofrequency ablation (RFA), percutaneous alcohol ablation, and microwave ablation; however, the literature cited in the guidelines reports on only RFA and ethanol ablation.^{36,} For hepatocellular carcinoma, the NCCN makes the following category 2A recommendation:

"All patients with HCC [hepatocellular carcinoma] should be evaluated for potential curative therapies (resection, transplantation, and for small lesions, ablative strategies). Locoregional therapy should be considered in patients who are not candidates for surgical curative treatments, or as a part of a strategy to bridge patients for other curative therapies.

Ablation (radiofrequency, cryoablation, percutaneous alcohol injection, microwave):

- All tumors should be amenable to ablation such that the tumor and, in the case of thermal ablation, a margin of normal tissue is treated. A
 margin is not expected following percutaneous ethanol injection.
- Tumors should be in a location accessible for percutaneous/laparoscopic/open approaches for ablation.
- Caution should be exercised when ablating lesions near major vessels, major bile ducts, diaphragm, and other intra-abdominal organs.
- Ablation alone may be curative in treating tumors ≤3 cm. In well-selected patients with small properly located tumors, ablation should be considered as definitive treatment in the context of a multidisciplinary review. Lesions 3 to 5 cm may be treated to prolong survival using arterially directed therapies, or with combination of an arterially directed therapy and ablation as long as tumor location is accessible for ablation.
- Unresectable/inoperable lesions >5 cm should be considered for treatment using arterially directed or systemic therapy.
- · Currently, no adjuvant therapies have been shown to have added value post-ablation."

For intrahepatic cholangiocarcinoma (isolated intrahepatic mass), the guidelines recommend locoregional therapy using arterially directed therapies or external-beam radiotherapy.

The NCCN guidelines on neuroendocrine and adrenal tumors (v.1. 2023) address the use of hepatic-directed therapies for patients with unresectable hepatic-predominant progressive metastatic neuroendocrine tumors.^{36,} These guidelines support consideration of ablative therapies such as RFA or cryoablation if near-complete tumor burden can be achieved (category 2B recommendation).

For ablative therapy, the NCCN makes the following category 2B recommendation:

"Percutaneous thermal ablation, often using microwave energy (radiofrequency and cryoablation are also acceptable), can be considered for oligometastatic liver disease, generally up to four lesions each smaller than 3 cm. Feasibility considerations include safe percutaneous imaging-guided approach to the target lesions, and proximity to vessels, bile ducts, or adjacent non-target structures that may require hydro- or aero-dissection for displacement."

The NCCN guidelines on the treatment of colon cancer with liver metastases (v. 2. 2023) consider patients with liver oligometastases as candidates for tumor ablation therapy. Ablative techniques include RFA, microwave ablation, cryoablation, percutaneous ethanol injection, and electro-coagulation. Use of surgery, ablation, or the combination "with the goal of less-than-complete resection/ablation of all known sites of disease, is not recommended other than in the scope of a clinical trial" (category 2A recommendations).^{36,}

U.S. Preventive Services Task Force Recommendations

Not applicable.

Medicare National Coverage

There is no national coverage determination. In the absence of a national coverage determination, coverage decisions are left to the discretion of local Medicare carriers.

REFERENCES

- 1. Singh SK, Singh R. Liver cancer incidence and mortality: Disparities based on age, ethnicity, health and nutrition, molecular factors, and geography. Cancer Health Disparities. Mar 2020; 4: e1-e10. PMID 34164612
- 2. Sohn RL, Carlin AM, Steffes C, et al. The extent of cryosurgery increases the complication rate after hepatic cryoablation. Am Surg. Apr 2003; 69(4): 317-22; discussion 322-3. PMID 12716090
- 3. Kim HI, An J, Han S, et al. Loco-regional therapies competing with radiofrequency ablation in potential indications for hepatocellular carcinoma : a network meta-analysis. Clin Mol Hepatol. Jul 05 2023. PMID 37403319
- 4. Keshavarz P, Raman SS. Comparison of combined transarterial chemoembolization and ablations in patients with hepatocellular carcinoma: a systematic review and meta-analysis. Abdom Radiol (NY). Mar 2022; 47(3): 1009-1023. PMID 34982183
- 5. Wang C, Wang H, Yang W, et al. Multicenter randomized controlled trial of percutaneous cryoablation versus radiofrequency ablation in hepatocellular carcinoma. Hepatology. May 2015; 61(5): 1579-90. PMID 25284802
- 6. Wang Y, Li W, Man W, et al. Comparison of Efficacy and Safety of TACE Combined with Microwave Ablation and TACE Combined with Cryoablation in the Treatment of Large Hepatocellular Carcinoma. Comput Intell Neurosci. 2022; 2022: 9783113. PMID 35795769
- 7. Luo J, Dong Z, Xie H, et al. Efficacy and safety of percutaneous cryoablation for elderly patients with small hepatocellular carcinoma: A prospective multicenter study. Liver Int. Apr 2022; 42(4): 918-929. PMID 35065003
- 8. Chen L, Ren Y, Sun T, et al. The efficacy of radiofrequency ablation versus cryoablation in the treatment of single hepatocellular carcinoma: A population-based study. Cancer Med. Jun 2021; 10(11): 3715-3725. PMID 33960697
- 9. Cha SY, Kang TW, Min JH, et al. RF Ablation Versus Cryoablation for Small Perivascular Hepatocellular Carcinoma: Propensity Score Analyses of Mid-Term Outcomes. Cardiovasc Intervent Radiol. Mar 2020; 43(3): 434-444. PMID 31844951
- 10. Ko SE, Lee MW, Rhim H, et al. Comparison of procedure-related complications between percutaneous cryoablation and radiofrequency ablation for treating periductal hepatocellular carcinoma. Int J Hyperthermia. Nov 17 2020; 37(1): 1354-1361. PMID 33297809
- 11. Wei J, Cui W, Fan W, et al. Unresectable Hepatocellular Carcinoma: Transcatheter Arterial Chemoembolization Combined With Microwave Ablation vs. Combined With Cryoablation. Front Oncol. 2020; 10: 1285. PMID 32850395
- Ei S, Hibi T, Tanabe M, et al. Cryoablation provides superior local control of primary hepatocellular carcinomas of 2 cm compared with radiofrequency ablation and microwave coagulation therapy: an underestimated tool in the toolbox. Ann Surg Oncol. Apr 2015; 22(4): 1294-300. PMID 25287439
- 13. Dunne RM, Shyn PB, Sung JC, et al. Percutaneous treatment of hepatocellular carcinoma in patients with cirrhosis: a comparison of the safety of cryoablation and radiofrequency ablation. Eur J Radiol. Apr 2014; 83(4): 632-8. PMID 24529593
- 14. Awad T, Thorlund K, Gluud C. Cryotherapy for hepatocellular carcinoma. Cochrane Database Syst Rev. Oct 07 2009; (4): CD007611. PMID 19821432
- 15. Adam R, Hagopian EJ, Linhares M, et al. A comparison of percutaneous cryosurgery and percutaneous radiofrequency for unresectable hepatic malignancies. Arch Surg. Dec 2002; 137(12): 1332-9; discussion 1340. PMID 12470093
- 16. Yang Y, Wang C, Lu Y, et al. Outcomes of ultrasound-guided percutaneous argon-helium cryoablation of hepatocellular carcinoma. J Hepatobiliary Pancreat Sci. Nov 2012; 19(6): 674-84. PMID 22187145
- 17. Rong G, Bai W, Dong Z, et al. Long-term outcomes of percutaneous cryoablation for patients with hepatocellular carcinoma within Milan criteria. PLoS One. 2015; 10(4): e0123065. PMID 25849963
- 18. Zhou L, Yang YP, Feng YY, et al. Efficacy of argon-helium cryosurgical ablation on primary hepatocellular carcinoma: a pilot clinical study. Ai Zheng. Jan 2009; 28(1): 45-8. PMID 19448416
- 19. Wang C, Lu Y, Chen Y, et al. Prognostic factors and recurrence of hepatitis B-related hepatocellular carcinoma after argon-helium cryoablation: a prospective study. Clin Exp Metastasis. 2009; 26(7): 839-48. PMID 19784786
- 20. Jaeck D, Oussoultzoglou E, Bachellier P, et al. Hepatic metastases of gastroenteropancreatic neuroendocrine tumors: safe hepatic surgery. World J Surg. Jun 2001; 25(6): 689-92. PMID 11376398
- 21. Gurusamy KS, Ramamoorthy R, Sharma D, et al. Liver resection versus other treatments for neuroendocrine tumours in patients with resectable liver metastases. Cochrane Database Syst Rev. Apr 15 2009; (2): CD007060. PMID 19370671
- 22. Saxena A, Chua TC, Chu F, et al. Optimizing the surgical effort in patients with advanced neuroendocrine neoplasm hepatic metastases: a critical analysis of 40 patients treated by hepatic resection and cryoablation. Am J Clin Oncol. Oct 2012; 35(5): 439-45. PMID 21654315
- 23. Chung MH, Pisegna J, Spirt M, et al. Hepatic cytoreduction followed by a novel long-acting somatostatin analog: a paradigm for intractable neuroendocrine tumors metastatic to the liver. Surgery. Dec 2001; 130(6): 954-62. PMID 11742323

- 24. Al-Asfoor A, Fedorowicz Z, Lodge M. Resection versus no intervention or other surgical interventions for colorectal cancer liver metastases. Cochrane Database Syst Rev. Apr 16 2008; (2): CD006039. PMID 18425932
- 25. Korpan NN. Hepatic cryosurgery for liver metastases. Long-term follow-up. Ann Surg. Feb 1997; 225(2): 193-201. PMID 9065296
- 26. Bala MM, Riemsma RP, Wolff R, et al. Cryotherapy for liver metastases. Cochrane Database Syst Rev. Jun 05 2013; (6): CD009058. PMID 23740609
- 27. Gurusamy KS, Ramamoorthy R, Imber C, et al. Surgical resection versus non-surgical treatment for hepatic node positive patients with colorectal liver metastases. Cochrane Database Syst Rev. Jan 20 2010; (1): CD006797. PMID 20091607
- 28. Pathak S, Jones R, Tang JM, et al. Ablative therapies for colorectal liver metastases: a systematic review. Colorectal Dis. Sep 2011; 13(9): e252-65. PMID 21689362
- 29. Ruers TJ, Joosten JJ, Wiering B, et al. Comparison between local ablative therapy and chemotherapy for non-resectable colorectal liver metastases: a prospective study. Ann Surg Oncol. Mar 2007; 14(3): 1161-9. PMID 17195903
- 30. Niu R, Yan TD, Zhu JC, et al. Recurrence and survival outcomes after hepatic resection with or without cryotherapy for liver metastases from colorectal carcinoma. Ann Surg Oncol. Jul 2007; 14(7): 2078-87. PMID 17473951
- Joosten J, Jager G, Oyen W, et al. Cryosurgery and radiofrequency ablation for unresectable colorectal liver metastases. Eur J Surg Oncol. Dec 2005; 31(10): 1152-9. PMID 16126363
- 32. Ng KM, Chua TC, Saxena A, et al. Two decades of experience with hepatic cryotherapy for advanced colorectal metastases. Ann Surg Oncol. Apr 2012; 19(4): 1276-83. PMID 21913018
- Seifert JK, Springer A, Baier P, et al. Liver resection or cryotherapy for colorectal liver metastases: a prospective case control study. Int J Colorectal Dis. Nov 2005; 20(6): 507-20. PMID 15973545
- 34. Kornprat P, Jarnagin WR, DeMatteo RP, et al. Role of intraoperative thermoablation combined with resection in the treatment of hepatic metastasis from colorectal cancer. Arch Surg. Nov 2007; 142(11): 1087-92. PMID 18025338
- 35. Xu KC, Niu LZ, He WB, et al. Percutaneous cryosurgery for the treatment of hepatic colorectal metastases. World J Gastroenterol. Mar 07 2008; 14(9): 1430-6. PMID 18322961
- 36. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Hepatocellular Carcinoma. Version 1.2023. https://www.nccn.org/professionals/physician_gls/PDF/hcc.pdf. Accessed August 8, 2023.

POLICY HISTORY - THIS POLICY WAS APPROVED BY THE FEP® PHARMACY AND MEDICAL POLICY COMMITTEE ACCORDING TO THE HISTORY BELOW:

Date	Action	Description
December 2011	New policy	
June 2012	Replace policy	Policy statement changed from investigational to not medically necessary. Related policies added.
March 2013	Replace policy	Policy updated with literature search; references 4, 11, 12, 15 added. Policy statement unchanged.
March 2014	Replace policy	Policy updated with literature review; references added, reordered or removed. Policy statement unchanged.
March 2015	Replace policy	Policy updated with literature review; reference 2 added. Policy statement unchanged.
March 2017	Replace policy	Policy updated with literature review through November 17, 2015; references 3-4 and 8 added. Policy statement unchanged except "not medically necessary, corrected to "investigational, due to FDA 510(k) clearance.
September 2018	Replace policy	Policy updated with literature search through May 7, 2018; no references added. Policy statement unchanged.
December 2019	Replace policy	Policy updated with literature search through July 7, 2019; no references added. Policy statement unchanged.
December 2020	Replace policy	Policy updated with literature review through July 28, 2020; no references added. Policy statement unchanged.
December 2021	Replace policy	Policy updated with literature review through July 28, 2021; references added. Policy statement unchanged.
December 2022	Replace policy	Policy updated with literature review through July 25, 2022; references added; guidelines updated. Policy statement unchanged.
December 2023	Replace policy	Policy updated with literature review through August 3, 2023; references added; guidelines updated. Policy statement unchanged.