Whole Exome and Whole Genome Sequencing for Diagnosis of Genetic Disorders

Description

Whole exome sequencing (WES) sequences the portion of the genome that contains protein-coding DNA, while whole genome sequencing (WGS) sequences both coding and noncoding regions of the genome. WES and WGS have been proposed for use in patients presenting with disorders and anomalies not explained by standard clinical workup. Potential candidates for WES and WGS include patients who present with a broad spectrum of suspected genetic conditions.

OBJECTIVE

The objective of this evidence review is to determine whether whole exome or whole genome sequencing improves the net health outcome in individuals with suspected genetic disorders.
POLICY STATEMENT

Standard whole exome sequencing, with trio testing when possible (see Policy Guidelines), may be considered medically necessary for the evaluation of unexplained congenital or neurodevelopmental disorder in children when ALL of the following criteria are met:

1. Documentation that the patient has been evaluated by a clinician with expertise in clinical genetics, including at minimum a family history and phenotype description, and counseled about the potential risks of genetic testing.

2. There is potential for a change in management and clinical outcome for the individual being tested.

3. A genetic etiology is considered the most likely explanation for the phenotype despite previous genetic testing (eg, chromosomal microarray analysis and/or targeted single-gene testing), OR when previous genetic testing has failed to yield a diagnosis, and the affected individual is faced with invasive procedures or testing as the next diagnostic step (eg, muscle biopsy).

Rapid whole exome sequencing or rapid whole genome sequencing, with trio testing when possible (see Policy Guidelines), may be considered medically necessary for the evaluation of critically ill infants in neonatal or pediatric intensive care with a suspected genetic disorder of unknown etiology when BOTH of the following criteria are met:

1. At least one of the following criteria is met:
 1. Multiple congenital anomalies (see Policy Guidelines);
 2. An abnormal laboratory test or clinical features suggests a genetic disease or complex metabolic phenotype (see Policy Guidelines);
 3. An abnormal response to standard therapy for a major underlying condition;

2. None of the following criteria apply regarding the reason for admission to intensive care:
 1. An infection with normal response to therapy;
 2. Isolated prematurity;
 3. Isolated unconjugated hyperbilirubinemia;
 4. Hypoxic Ischemic Encephalopathy;
 5. Confirmed genetic diagnosis explains illness;
 6. Isolated Transient Neonatal Tachypnea;
 7. Nonviable neonates.

Whole exome sequencing is considered investigational for the diagnosis of genetic disorders in all other situations.

Whole genome sequencing is considered investigational for the diagnosis of genetic disorders in all other situations.

Whole exome sequencing and whole genome sequencing are considered investigational for screening for genetic disorders.

The policies contained in the FEP Medical Policy Manual are developed to assist in administering contractual benefits and do not constitute medical advice. They are not intended to replace or substitute for the independent medical judgment of a practitioner or other health care professional in the treatment of an individual member. The Blue Cross and Blue Shield Association does not intend by the FEP Medical Policy Manual, or by any particular medical policy, to recommend, advocate, encourage or discourage any particular medical technologies. Medical decisions relative to medical technologies are to be made strictly by members/patients in consultation with their health care providers. The conclusion that a particular service or supply is medically necessary does not constitute a representation or warranty that the Blue Cross and Blue Shield Service Benefit Plan covers (or pays for) this service or supply for a particular member.
POLICY GUIDELINES

The policy statements are intended to address the use of whole exome and whole genome sequencing for the diagnosis of genetic disorders in patients with suspected genetic disorders and for population-based screening.

This policy does not address the use of whole exome and whole genome sequencing for preimplantation genetic diagnosis or screening, prenatal (fetal) testing, or testing of cancer cells.

Rapid Sequencing

In the NSIGHT1 trial (Petrikin, 2018) rapid Whole Genome Sequencing (rWGS) provided time to provisional diagnosis by 10 days with time to final report of approximately ~ 17 days although the trial required confirmatory testing of WGS results which lengthened the time to rWGS diagnosis by 7 - 10 days. The WGS was performed in "rapid run" mode with minimum depth of 90 Gb per genome and average depth of coverage of 40X.

For rapid WES or WGS, the patient should be critically ill and in the NICU or PICU when the test is ordered but may be discharged before results are delivered.

Copy number variation (CNV) analysis should be performed in parallel with rWGS using chromosomal microarray analysis (CMA) or directly within rWGS if the test is validated for CNV analysis.

Examples of specific malformations highly suggestive of a genetic etiology, include but are not limited to any of the following :

- Choanal atresia
- Coloboma
- Hirschsprung disease
- Meconium ileus

Examples of an abnormal laboratory test suggesting a genetic disease or complex metabolic phenotype, include but are not limited to any of the following:

- Abnormal newborn screen
- Conjugated hyperbilirubinemia not due to total parental nutrition (TPN) cholestasis
- Hyperammonemia
- Lactic acidosis not due to poor perfusion
- Refractory or severe hypoglycemia

Examples of clinical features suggesting a genetic disease include but not limited to any of the following:

- Significant hypotonia; or
- Persistent seizures.
Infant with high risk stratification on evaluation for a Brief Resolved Unexplained Event (BRUE) (see below) with any of the following features:

- Recurrent events without respiratory infection
- Recurrent witnessed seizure like events
- Required Cardiopulmonary Resuscitation (CPR)
 - Significantly abnormal chemistry including but not limited to electrolytes, bicarbonate or lactic acid, venous blood gas, glucose, or other tests that suggest an inborn error of metabolism
- Significantly abnormal electrocardiogram (ECG), including but not limited to possible channelopathies, arrhythmias, cardiomyopathies, myocarditis or structural heart disease
- Family history of:
 - Arrhythmia
 - BRUE in sibling
 - Developmental delay
 - Inborn error of metabolism or genetic disease
 - Long QT syndrome (LQTS)
 - Sudden unexplained death (including unexplained car accident or drowning) in first- or second-degree family members before age 35, and particularly as an infant

BRUE

Brief Resolved Unexplained Event (BRUE) was previously known as Apparent Life Threatening Event (ALTE). In a practice guideline from the American Academy of Pediatrics (AAP), BRUE is defined as an event occurring in an infant younger than 1 year of age when the observer reports a sudden, brief (usually less than one minute), and now resolved episode of one or more of the following:

- Absent, decreased, or irregular breathing
- Altered level of responsiveness
- Cyanosis or pallor
- Marked change in tone (hyper- or hypotonia)

A BRUE is diagnosed only when there is no explanation for a qualifying event after conducting an appropriate history and physical examination.

Note: More information is available at: https://pediatrics.aappublications.org/content/137/5/e20160590

Trio Testing

The recommended option for testing when possible is testing of the child and both parents (trio testing). Trio testing increases the chance of finding a definitive diagnosis and reduces false-positive findings.

Trio testing is preferred whenever possible but should not delay testing of a critically ill patient when rapid testing is indicated. Testing of one available parent should be done if both are not immediately available and one or both parents can be done later if needed.
Genetics Nomenclature Update

The Human Genome Variation Society nomenclature is used to report information on variants found in DNA and serves as an international standard in DNA diagnostics. It is being implemented for genetic testing medical evidence review updates starting in 2017 (see Table PG1). The Society's nomenclature is recommended by the Human Variome Project, the Human Genome Organisation, and by the Human Genome Variation Society itself.

The American College of Medical Genetics and Genomics and the Association for Molecular Pathology standards and guidelines for interpretation of sequence variants represent expert opinion from both organizations, in addition to the College of American Pathologists. These recommendations primarily apply to genetic tests used in clinical laboratories, including genotyping, single genes, panels, exomes, and genomes. Table PG2 shows the recommended standard terminology—"pathogenic," "likely pathogenic," "uncertain significance," "likely benign," and "benign"—to describe variants identified that cause Mendelian disorders.

Table PG1. Nomenclature to Report on Variants Found in DNA

<table>
<thead>
<tr>
<th>Previous</th>
<th>Updated</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mutation</td>
<td>Disease-associated</td>
<td>Disease-associated change in the DNA sequence</td>
</tr>
<tr>
<td>Variant</td>
<td>Change in the DNA</td>
<td>sequence</td>
</tr>
<tr>
<td>Familial variant</td>
<td>Disease-associated</td>
<td>variant identified in a proband for use in subsequent targeted genetic testing in first-degree relatives</td>
</tr>
</tbody>
</table>

Table PG2. ACMG-AMP Standards and Guidelines for Variant Classification

<table>
<thead>
<tr>
<th>Variant Classification</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathogenic</td>
<td>Disease-causing change in the DNA sequence</td>
</tr>
<tr>
<td>Likely pathogenic</td>
<td>Likely disease-causing change in the DNA sequence</td>
</tr>
<tr>
<td>Variant of uncertain significance</td>
<td>Change in DNA sequence with uncertain effects on disease</td>
</tr>
<tr>
<td>Likely benign</td>
<td>Likely benign change in the DNA sequence</td>
</tr>
<tr>
<td>Benign</td>
<td>Benign change in the DNA sequence</td>
</tr>
</tbody>
</table>

ACMG: American College of Medical Genetics and Genomics; AMP: Association for Molecular Pathology.

Genetic Counseling

Experts recommend formal genetic counseling for patients who are at risk for inherited disorders and who wish to undergo genetic testing. Interpreting the results of genetic tests and understanding risk factors can be difficult for some patients; genetic counseling helps individuals understand the impact of genetic testing, including the possible effects the test results could have on the individual or their family members. It should be noted that genetic counseling may alter the utilization of genetic testing substantially and may reduce inappropriate testing; further, genetic counseling should be performed by an individual with experience and expertise in genetic medicine and genetic testing methods.

The policies contained in the FEP Medical Policy Manual are developed to assist in administering contractual benefits and do not constitute medical advice. They are not intended to replace or substitute for the independent medical judgment of a practitioner or other health care professional in the treatment of an individual member. The Blue Cross and Blue Shield Association does not intend by the FEP Medical Policy Manual, or by any particular medical policy, to recommend, advocate, encourage or discourage any particular medical technologies. Medical decisions relative to medical technologies are to be made strictly by members/patients in consultation with their health care providers. The conclusion that a particular service or supply is medically necessary does not constitute a representation or warranty that the Blue Cross and Blue Shield Service Benefit Plan covers (or pays for) this service or supply for a particular member.
BENEFIT APPLICATION

Experimental or investigational procedures, treatments, drugs, or devices are not covered (See General Exclusion Section of brochure).

Screening (other than the preventive services listed in the brochure) is not covered. Please see Section 6 General exclusions.

Benefits are available for specialized diagnostic genetic testing when it is medically necessary to diagnose and/or manage a patient’s existing medical condition. Benefits are not provided for genetic panels when some or all of the tests included in the panel are not covered, are experimental or investigational, or are not medically necessary General exclusions. Benefits are available for specialized diagnostic genetic testing when it is medically necessary to diagnose and/or manage a patient’s existing medical condition. Benefits are not provided for genetic panels when some or all of the tests included in the panel are not covered, are experimental or investigational, or are not medically necessary

FDA REGULATORY STATUS

Clinical laboratories may develop and validate tests in-house and market them as a laboratory service; laboratory-developed tests must meet the general regulatory standards of the Clinical Laboratory Improvement Amendments (CLIA). WES or WGS tests as a clinical service are available under the auspices of the CLIA. Laboratories that offer laboratory-developed tests must be licensed by the CLIA for high-complexity testing. To date, the U.S. Food and Drug Administration (FDA) has chosen not to require any regulatory review of this test.

RATIONALE

Summary of Evidence

For individuals who are children who are not critically ill with multiple unexplained congenital anomalies or a neurodevelopmental disorder of unknown etiology following standard workup who receive whole exome sequencing (WES) with trio testing when possible, the evidence includes large case series and within-subject comparisons. Relevant outcomes are test validity, functional outcomes, changes in reproductive decision making, and resource utilization. Patients who have multiple congenital anomalies or a developmental disorder with a suspected genetic etiology, but whose specific genetic alteration is unclear or unidentified by standard clinical workup, may be left without a clinical diagnosis of their disorder, despite a lengthy diagnostic workup. For a substantial proportion of these patients, WES may return a likely pathogenic variant. Several large and smaller series have reported diagnostic yields of WES ranging from 25% to 60%, depending on the individual’s age, phenotype, and previous workup. One comparative study found a 44% increase in yield compared with standard testing strategies. Many of the studies have also reported changes in patient management, including medication changes, discontinuation of or additional testing, ending the diagnostic odyssey, and family planning. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

For individuals who are children with a suspected genetic disorder other than multiple congenital anomalies or a neurodevelopmental disorder of unknown etiology following standard workup who receive WES with trio testing when possible, the evidence includes small case series and prospective research studies. Relevant outcomes are test validity, functional outcomes, changes in reproductive decision making, and resource utilization. There is an increasing number of reports evaluating the use of WES to identify a molecular basis for disorders other than multiple congenital anomalies or neurodevelopmental disorders. The diagnostic yields in these studies range from as low as 3% to 60%. Some studies have reported on the use of a virtual gene panel with restricted analysis of disease-associated genes, and WES data allows reanalysis as new genes are linked to the patient phenotype. Overall, a limited number of patients have been studied for any specific disorder, and clinical use of WES for these disorders is at an early stage with uncertainty about changes in patient management. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who are children who are not critically ill with multiple unexplained congenital anomalies or a neurodevelopmental disorder of unknown etiology following standard workup who receive WGS with trio testing when possible, the evidence includes case series. Relevant outcomes are test validity, functional outcomes, changes in reproductive decision making, and resource utilization. In studies of children with congenital abnormalities and development delays of unknown etiology following standard clinical workup, the yield of WGS has been between 20% and 40%. Additional indirect evidence is available from studies reporting diagnostic yield and

The policies contained in the FEP Medical Policy Manual are developed to assist in administering contractual benefits and do not constitute medical advice. They are not intended to replace or substitute for the independent medical judgment of a practitioner or other health care professional in the treatment of an individual member. The Blue Cross and Blue Shield Association does not intend by the FEP Medical Policy Manual, or by any particular medical policy, to recommend, advocate, encourage or discourage any particular medical technologies. Medical decisions relative to medical technologies are to be made strictly by members/patients in consultation with their health care providers. The conclusion that a particular service or supply is medically necessary does not constitute a representation or warranty that the Blue Cross and Blue Shield Service Benefit Plan covers (or pays for) this service or supply for a particular member.
change in management results of WES in a similar population. WGS may result in similar or better diagnostic yield for pathogenic or likely pathogenic variants as compared with WES but few direct comparisons are available. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who are children with a suspected genetic disorder other than multiple unexplained congenital anomalies or a neurodevelopmental disorder of unknown etiology following standard workup who receive WGS with trio testing when possible, the evidence includes case series. Relevant outcomes are test validity, functional outcomes, changes in reproductive decision making, and resource utilization. WGS has also been studied in other genetic conditions with yield ranging from 9% to 55%. Overall, a limited number of patients have been studied for any specific disorder, and clinical use of WGS as well as information regarding meaningful changes in management for these disorders is at an early stage. The evidence is insufficient to determine the effects of the technology on health outcomes.

For individuals who are critically ill infants with a suspected genetic disorder of unknown etiology following standard workup who receive rapid WGS (rWGS) or rapid WES (rWES) with trio testing when possible, the evidence includes randomized controlled trials (RCTs) and case series. Relevant outcomes are test validity, functional outcomes, changes in reproductive decision making, and resource utilization. One RCT comparing rapid trio WGS (rWGS) with standard genetic tests to diagnose suspected genetic disorders in critically ill infants was terminated early due to loss of equipoise. The rate of genetic diagnosis within 28 days of enrollment was higher for rWGS versus standard tests (31% vs 3%; p=0.003). Changes in management due to test results were reported in 41% vs. 21% (p=0.11) of rWGS vs control patients; however, 73% of control subjects received broad genetic tests (eg, next-generation sequencing panel testing, WES, or WGS) as part of standard testing. A second RCT compared rWGS to rWES in seriously ill infants with diseases of unknown etiology from the neonatal intensive care unit, pediatric intensive care unit, and cardiovascular intensive care unit. Only the diagnostic outcomes have currently been reported. The diagnostic yield of rWGS and rWES was similar (19% vs. 20%, respectively), as was time (days) to result (median, 11 vs. 11 days). Several retrospective and prospective studies including more than 800 critically ill infants and children in total have reported on diagnostic yield for rWGS or rWES including phenotypically diverse but critically ill infants and had yields of between 30% and 60% for pathogenic or likely pathogenic variants. Studies have also reported associated changes in patient management for patients receiving a diagnosis from rWGS or rWES, including avoidance of invasive procedures, medication changes to reduce morbidity, discontinuation of or additional testing and initiation of palliative care or reproductive planning. A chain of evidence linking meaningful improvements in diagnostic yield and changes in management expected to improve health outcomes supports the clinical value of rWGS or rWES. The evidence is sufficient to determine that the technology results in a meaningful improvement in the net health outcome.

SUPPLEMENTAL INFORMATION

Practice Guidelines and Position Statements

American College of Medical Genetics and Genomics

In 2012, the American College of Medical Genetics and Genomics (ACMG) has recommended that diagnostic testing with whole exome sequencing (WES) and whole genome sequencing (WGS) should be considered in the clinical diagnostic assessment of a phenotypically affected individual when:

1. "The phenotype or family history data strongly implicate a genetic etiology, but the phenotype does not correspond with a specific disorder for which a genetic test targeting a specific gene is available on a clinical basis.

2. A patient presents with a defined genetic disorder that demonstrates a high degree of genetic heterogeneity, making WES or WGS analysis of multiple genes simultaneously a more practical approach.

3. A patient presents with a likely genetic disorder but specific genetic tests available for that phenotype have failed to arrive at a diagnosis.

4. A fetus with a likely genetic disorder in which specific genetic tests, including targeted sequencing tests, available for that phenotype have failed to arrive at a diagnosis."

ACMG has recommended that for screening purposes:

The policies contained in the FEP Medical Policy Manual are developed to assist in administering contractual benefits and do not constitute medical advice. They are not intended to replace or substitute for the independent medical judgment of a practitioner or other health care professional in the treatment of an individual member. The Blue Cross and Blue Shield Association does not intend by the FEP Medical Policy Manual, or by any particular medical policy, to recommend, advocate, encourage or discourage any particular medical technologies. Medical decisions relative to medical technologies are to be made strictly by members/patients in consultation with their health care providers. The conclusion that a particular service or supply is medically necessary does not constitute a representation or warranty that the Blue Cross and Blue Shield Service Benefit Plan covers (or pays for) this service or supply for a particular member.
WGS/WES may be considered in preconception carrier screening, using a strategy to focus on genetic variants known to be associated with significant phenotypes in homozygous or hemizygous progeny.

ACMG has also recommended that WGS and WES not be used at this time as an approach to prenatal screening or as a first-tier approach for newborn screening.

In 2014, ACMG guidelines on the clinical evaluation and etiologic diagnosis of hearing loss stated that for individuals with findings suggestive of a syndromic genetic etiology for hearing loss, "pretest genetic counseling should be provided, and, with patient"s informed consent, genetic testing, if available, should be ordered to confirm the diagnosis<97>this testing may include single-gene tests, hearing loss sequencing panels, WES, WGS, chromosome analysis, or microarray-based copy number analysis, depending on clinical findings."61.

In 2016, ACMG updated its recommendations on reporting incidental findings in WGS and WES testing. 62 ACMG determined that reporting some incidental findings would likely have medical benefit for the patients and families of patients undergoing clinical sequencing, recommending that, when a report is issued for clinically indicated exome and genome sequencing, a minimum list of conditions, genes, and variants should be routinely evaluated and reported to the ordering clinician. The 2016 update added 4 genes and removed 1 gene resulting in an updated secondary findings minimum list including 59 medically actionable genes recommended for return in clinical genomic sequencing.

American Academy of Neurology et al

In 2014, the American Academy of Neurology and American Association of Neuromuscular and Electrodiagnostic Medicine issued evidence-based guidelines on the diagnosis and treatment of limb-girdle and distal dystrophies, which made the following recommendations (see Table 1). 63

Table 1. Guidelines on Limb-Girdle Muscular Dystrophy

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>LOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnosis</td>
<td></td>
</tr>
<tr>
<td>• For patients with suspected muscular dystrophy, clinicians should use a clinical approach to guide genetic diagnosis based on the clinical phenotype, including the pattern of muscle involvement, inheritance pattern, age at onset, and associated manifestations (eg, early contractures, cardiac or respiratory involvement).</td>
<td>B</td>
</tr>
<tr>
<td>• In patients with suspected muscular dystrophy in whom initial clinically directed genetic testing does not provide a diagnosis, clinicians may obtain genetic consultation or perform parallel sequencing of targeted exomes, whole-exome sequencing, whole-genome screening, or next-generation sequencing to identify the genetic abnormality.</td>
<td>C</td>
</tr>
<tr>
<td>Management of cardiac complications</td>
<td></td>
</tr>
<tr>
<td>• Clinicians should refer newly diagnosed patients with (1) limb-girdle muscular dystrophy (LGMD)1A, LGMD1B, LGMD1D, LGMD1E, LGMD2C - K, LGMD2M - P. ... or (2) muscular dystrophy without a specific genetic diagnosis for cardiology evaluation, including electrocardiogram (ECG) and structural evaluation (echocardiography or cardiac magnetic resonance imaging [MRI]), even if they are asymptomatic from a cardiac standpoint, to guide appropriate management.</td>
<td>B</td>
</tr>
</tbody>
</table>
If ECG or structural cardiac evaluation (eg, echocardiography) has abnormal results, or if the patient has episodes of syncope, near-syncope, or palpitations, clinicians should order rhythm evaluation (eg, Holter monitor or event monitor) to guide appropriate management.

Clinicians should refer muscular dystrophy patients with palpitations, symptomatic or asymptomatic tachycardia or arrhythmias, or signs and symptoms of cardiac failure for cardiology evaluation.

It is not obligatory for clinicians to refer patients with LGMD2A, LGMD2B, and LGMD2L for cardiac evaluation unless they develop overt cardiac signs or symptoms.

Management of pulmonary complications

Clinicians should order pulmonary function testing (spirometry and maximal inspiratory/expiratory force in the upright and, if normal, supine positions) or refer for pulmonary evaluation (to identify and treat respiratory insufficiency) in muscular dystrophy patients at the time of diagnosis, or if they develop pulmonary symptoms later in their course.

In patients with a known high risk of respiratory failure (eg, those with LGMD2I ...), clinicians should obtain periodic pulmonary function testing (spirometry and maximal inspiratory/expiratory force in the upright position and, if normal, in the supine position) or evaluation by a pulmonologist to identify and treat respiratory insufficiency.

It is not obligatory for clinicians to refer patients with LGMD2B and LGMD2L for pulmonary evaluation unless they are symptomatic.

Clinicians should refer muscular dystrophy patients with excessive daytime somnolence, nonrestorative sleep (eg, frequent nocturnal arousals, morning headaches, excessive daytime fatigue), or respiratory insufficiency based on pulmonary function tests for pulmonary or sleep medicine consultation for consideration of noninvasive ventilation to improve quality of life.

U.S. Preventive Services Task Force Recommendations

Not applicable.

Medicare National Coverage

There is no national coverage determination. In the absence of a national coverage determination, coverage decisions are left to the discretion of local Medicare carriers.

LOE: level of evidence; **LGMD:** limb-girdle muscular dystrophy.

The policies contained in the FEP Medical Policy Manual are developed to assist in administering contractual benefits and do not constitute medical advice. They are not intended to replace or substitute for the independent medical judgment of a practitioner or other health care professional in the treatment of an individual member. The Blue Cross and Blue Shield Association does not intend by the FEP Medical Policy Manual, or by any particular medical policy, to recommend, advocate, encourage or discourage any particular medical technologies. Medical decisions relative to medical technologies are to be made strictly by members/patients in consultation with their health care providers. The conclusion that a particular service or supply is medically necessary does not constitute a representation or warranty that the Blue Cross and Blue Shield Service Benefit Plan covers (or pays for) this service or supply for a particular member.
REFERENCES

3. Blue Cross and Blue Shield Association Technology Evaluation Center (TEC). Special Report: Exome Sequencing for Clinical Diagnosis of Patients with Suspected Genetic Disorders. TEC Assessments 2013; Volume 28: Tab 3

The policies contained in the FEP Medical Policy Manual are developed to assist in administering contractual benefits and do not constitute medical advice. They are not intended to replace or substitute for the independent medical judgment of a practitioner or other health care professional in the treatment of an individual member. The Blue Cross and Blue Shield Association does not intend by the FEP Medical Policy Manual, or by any particular medical policy, to recommend, advocate, encourage or discourage any particular medical technologies. Medical decisions relative to medical technologies are to be made strictly by members/patients in consultation with their health care providers. The conclusion that a particular service or supply is medically necessary does not constitute a representation or warranty that the Blue Cross and Blue Shield Service Benefit Plan covers (or pays for) this service or supply for a particular member.

POLICY HISTORY - THIS POLICY WAS APPROVED BY THE FEP® PHARMACY AND MEDICAL POLICY COMMITTEE ACCORDING TO THE HISTORY BELOW:

<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>December 2013</td>
<td>New policy</td>
<td>Policy updated with literature review. References 2, 4, 5, and 8-13 added. Whole genome sequencing added to policy statement; whole genome sequencing considered investigational.</td>
</tr>
<tr>
<td>December 2015</td>
<td>Replace policy</td>
<td>Policy updated with literature review through literature review through August 22, 2016; references 9, 11, 14, 16-18, and 20-22 added. Rationale revised. Whole exome sequencing considered medically necessary for children with multiple congenital anomalies or a neurodevelopmental disorder. All other uses of whole exome and whole genome sequencing are considered investigational. Policy statement added that whole exome and whole genome sequencing are considered investigational for screening.</td>
</tr>
<tr>
<td>March 2017</td>
<td>Replace policy</td>
<td>Policy updated with literature search through August 23, 2017; references 6-8, 19, 24-25, 27, and 30 added. Policy statements unchanged.</td>
</tr>
<tr>
<td>December 2017</td>
<td>Replace policy</td>
<td>Policy updated with literature search through August 6, 2018; references 12, 16-20, 28-29, 31, 35, and 37; references 36 and 38 updated. Policy statements unchanged.</td>
</tr>
</tbody>
</table>

The policies contained in the FEP Medical Policy Manual are developed to assist in administering contractual benefits and do not constitute medical advice. They are not intended to replace or substitute for the independent medical judgment of a practitioner or other health care professional in the treatment of an individual member. The Blue Cross and Blue Shield Association does not intend by the FEP Medical Policy Manual, or by any particular medical policy, to recommend, advocate, encourage or discourage any particular medical technologies. Medical decisions relative to medical technologies are to be made strictly by members/patients in consultation with their health care providers. The conclusion that a particular service or supply is medically necessary does not constitute a representation or warranty that the Blue Cross and Blue Shield Service Benefit Plan covers (or pays for) this service or supply for a particular member.
<table>
<thead>
<tr>
<th>Date</th>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 2020</td>
<td>Replace policy</td>
<td>Policy updated with literature search through January 31, 2020. references added. Policy statements added to include rapid whole exome or genome sequencing with trio testing when possible as medically necessary for critically ill infants with suspected genetic disorder of unknown etiology following standard workup. Policy statement added to include whole genome sequencing with trio testing when possible for children who are not critically ill with multiple unexplained congenital anomalies or neurodevelopmental disorder of unknown etiology following standard workup.</td>
</tr>
</tbody>
</table>

The policies contained in the FEP Medical Policy Manual are developed to assist in administering contractual benefits and do not constitute medical advice. They are not intended to replace or substitute for the independent medical judgment of a practitioner or other health care professional in the treatment of an individual member. The Blue Cross and Blue Shield Association does not intend by the FEP Medical Policy Manual, or by any particular medical policy, to recommend, advocate, encourage or discourage any particular medical technologies. Medical decisions relative to medical technologies are to be made strictly by members/patients in consultation with their health care providers. The conclusion that a particular service or supply is medically necessary does not constitute a representation or warranty that the Blue Cross and Blue Shield Service Benefit Plan covers (or pays for) this service or supply for a particular member.